Complex Human Activity Recognition (CHAR) identifies the actions and behaviors of individuals in smart environments, but the process of labeling datasets with precise temporal information of atomic activities (basic human behaviors) is difficult and can lead to errors. Moreover, in real-world scenarios, accurate and detailed labeling is hard to obtain. Addressing this challenge is important…
Recent research by scientists at Ohio State University and Carnegie Mellon University has analyzed the limitations of large language models (LLMs), such as GPT-4, and their limitations in implicit reasoning. This refers to their ability to make accurate comparisons of internalized facts and properties, even when aware of the entities in question.
The study focused…
Accurate magnetic hysteresis modeling remains a challenging task that is crucial for optimizing the performance of magnetic devices. Traditional methods, such as recurrent neural networks (RNNs), long short-term memory (LSTM) networks, and gated recurrent units (GRUs), have limitations when it comes to generalizing novel magnetic fields. This generalization is vital for real-world applications.
A team of…
Vision-Language Models (VLMs) offer immense potential for transforming various applications, including visual assistance for visually impaired individuals. However, their efficacy is often marred by complexities such as multi-object scenarios and diverse cultural contexts. Recent research highlights these issues in two separate studies focused on multi-object hallucination and cultural inclusivity.
Hallucination in vision-language models occurs when objects…
Protein sequence design is a significant part of protein engineering for drug discovery, involving the exploration of vast amino acid sequence combinations. To overcome the limitations of traditional methods like evolutionary strategies, researchers have proposed utilizing reinforcement learning (RL) techniques to facilitate the creation of new protein sequences. This progress comes as advancements in protein…
The study of multilingual natural language processing (NLP) is rapidly progressing, seeking to create language models capable of interpreting and generating text in various languages. The central goal of this research is to improve global communication and access to information, making artificial intelligence technologies accessible across diverse linguistic backgrounds.
However, creating such models brings significant challenges,…
Software engineering frequently employs formal verification to guarantee program correctness, a process frequently facilitated by bounded model checking (BMC). Traditional verification tools use explicit type information, making Python, a dynamic programming language, difficult to verify. The lack of clear type information in Python programs makes ensuring their safety a challenging process, especially in systems with…
Natural language processing (NLP) is a field in computer science that seeks to enable computers to interpret and generate human language. This has various applications such as machine translation and sentiment analysis. However, there are limitations and inefficiencies with conventional tokenizers employed in large language models (LLMs). These tokenizers break down text into subwords, demanding…
Artificial Neural Networks (ANNs) have long been used in artificial intelligence but are often criticized for their static structure which struggles to adapt to changing circumstances. This has restricted their use in areas such as real-time adaptive systems or robotics. In response to this, researchers from the IT University of Copenhagen have designed an innovative…
Artificial Neural Networks (ANNs), while transformative, have traditional shortcomings in terms of adaptability and plasticity. This lack of flexibility poses a significant challenge for their applicability in dynamic and unpredictable environments. It also inhibits their effectiveness in real-time applications like robotics and adaptive systems, making real-time learning and adaptation a crucial achievement for artificial intelligence…