Large language models (LLMs) are known for their ability to contain vast amounts of factual information, leading to their effective use in factual question-answering tasks. However, these models often create appropriate but incorrect responses due to issues related to retrieval and application of their stored knowledge. This undermines their dependability and hinders their wide adoption…
Large Language Models (LLMs) have achieved considerable success in various tasks related to language understanding, reasoning, and generation. Currently, researchers are focusing on creating LLM-based autonomous agents for more diverse and complex real-world applications. However, many situations in the real world pose challenges that cannot be overcome by a single agent. Hence, engineers are developing…
Generating synthetic data is becoming an essential part of machine learning as it allows researchers to create large datasets where real-world data is scarce or expensive to obtain. The created data often display specific characteristics that benefit machine learning models' learning processes, helping to improve performance across various applications. However, the usage of synthetic data…
The development and deployment of large language models (LLMs) play a crucial role in natural language processing (NLP), but these models pose significant challenges due to their high computational cost and extensive memory requirement. This makes the training process laborious and inefficient and could inhibit broader application and research. As a result, developing efficient methods…
Large language models (LLMs) are essential for natural language processing (NLP), but they demand significant computational resources and time for training. This requirement presents a key challenge in both research and application of LLMs. The challenge lies in efficiently training these huge models without compromising their performance.
Several approaches have been developed to address this issue.…
Deep Reinforcement Learning (DRL) is advancing robotic control capabilities, albeit with a rising trend of algorithm complexity. These complexities lead to challenging implementation details, impacting the reproducibility of sophisticated algorithms. This issue, therefore, necessitates the need for simpler machine learning models that are not as computationally demanding.
A team of international researchers from the German Aerospace…
The advancement of deep generative models has brought new challenges in denoising, specifically in blind denoising where noise level and covariance are unknown. To tackle this issue, a research team from Ecole Polytechnique, Institut Polytechnique de Paris, and Flatiron Institute developed a novel method called the Gibbs Diffusion (GDiff) approach.
The GDiff approach is a fresh…
Training large language models (LLMs) hinges on the availability of diverse and abundant datasets, which can be created through synthetic data generation. The conventional methods of creating synthetic data - instance-driven and key-point-driven - have limitations in diversity and scalability, making them insufficient for training advanced LLMs.
Addressing these shortcomings, researchers at Tencent AI Lab have…
Concept-based learning (CBL) is a machine learning technique that involves using high-level concepts derived from raw features to make predictions. It enhances both model interpretability and efficiency. Among the various types of CBLs, the concept-based bottleneck model (CBM) has gained prominence. It compresses input features into a lower-dimensional space, capturing the essential data and discarding…
Large Language Models (LLMs) like GPT-3.5 Turbo and Mistral 7B often struggle to maintain accuracy while retrieving information from the middle of long input contexts, a phenomenon referred to as "lost-in-the-middle". This complication significantly hampers their effectiveness in tasks requiring the processing and reasoning over long passages, such as multi-document question answering (MDQA) and flexible…
Safeguarding user interactions with Language Models (LLMs) is an important aspect of artificial intelligence, as these models can produce harmful content or fall victim to adversarial prompts if not properly secured. Existing moderating tools, like Llama-Guard and various open-source models, focus primarily on identifying harmful content and assessing safety but suffer from shortcomings such as…