In the field of computer vision, developing adaptable models that require minimal human intervention is generating new opportunities for research and use. A key area of focus is using machine learning to enhance the ability of models to switch between tasks efficiently, thereby increasing their flexibility and applicability in various situations.
Usually, computer vision systems require…
Automated Audio Captioning (AAC) is a blossoming field of study that focuses on translating audio streams into clear and concise text. AAC systems are created with the aid of substantial and accurately annotated audio-text data. However, the traditional method of manually aligning audio segments with text annotations is not only laborious and costly but also…
Researchers from Mila, McGill University, ServiceNow Research, and Facebook CIFAR AI Chair have developed a method called LLM2Vec to transform pre-trained decoder-only Large Language Models (LLMs) into text encoders. Modern NLP tasks highly depend on text embedding models that translate text's semantic meaning into vector representations. Historically, pre-trained bidirectional encoding models such as BERT and…
Computational linguistics has seen significant advancements in recent years, particularly in the development of Multilingual Large Language Models (MLLMs). These are capable of processing a multitude of languages simultaneously, which is critical in an increasingly globalized world that requires effective interlingual communication. MLLMs address the challenge of efficiently processing and generating text across various languages,…
In recent years, there has been increasing attention paid to the development of Small Language Models (SLMs) as a more efficient and cost-effective alternative to Large Language Models (LLMs), which are resource-heavy and present operational challenges. In this context, researchers from the Department of Computer Science and Technology at Tsinghua University and Modelbest Inc. have…
Researchers from Meta/FAIR Labs and Mohamed bin Zayed University of AI have carried out a detailed exploration into the scaling laws for large language models (LLMs). These laws delineate the relationship between factors such as a model's size, the time it takes to train, and its overall performance. While it’s commonly held that larger models…
The field of Natural Language Processing (NLP) has witnessed a radical transformation following the advent of Large Language Models (LLMs). However, the prevalent Transformer architecture used in these models suffers from quadratic complexity issues. While techniques such as sparse attention have been developed to lower this complexity, a new generation of models is making headway…
Causal learning plays a pivotal role in the effective operation of artificial intelligence (AI), helping improve AI models' ability to rationalize decisions, adapt to new data, and visualize hypothetical scenarios. However, the evaluation of large language models' (LLM) proficiency in processing causality, such as GPT-3 and its variants, remains a challenge due to the need…
In the realm of Multi-modal learning, large image-text foundational models have shown remarkable zero-shot performance and enhanced stability across a multitude of downstream tasks. These models, like Contrastive Language-Image Pretraining (CLIP), have notably improved Multi-modal AI due to their capability to simultaneously assess both images and text. A variety of architectures have recently been shown…
Large language models (LLMs), crucial for various applications such as automated dialog systems and data analysis, often struggle in tasks necessitating deep cognitive processes and dynamic decision-making. A primary issue lies in their limited capability to engage in significant reasoning without human intervention. Most LLMs function on fixed input-output cycles, not permitting mid-process revisions based…
Recent advancements in Large Language Models (LLMs) have seen impressive accomplishments in various tasks, such as question-answering, captioning, and segmentation, thanks to their integration with visual encoders for multimodal tasks. However, these LLMs, despite their prowess, face limitations when dealing with video inputs due to their context length and constraints with GPU memory. Existing models…
Large language models (LLMs) paired with tree-search methodologies have been leading advancements in the field of artificial intelligence (AI), particularly for complex reasoning and planning tasks. These models are revolutionizing decision-making capabilities across various applications. However, a notable imperfection lies in their inability to learn from prior mistakes and frequent error repetition during problem-solving.
Improving the…