In the fast-paced digital world, the integration of visual and textual data for advanced video comprehension has emerged as a key area of study. Large Language Models (LLMs) play a vital role in processing and generating text, revolutionizing the way we engage with digital content. But, traditionally, these models are designed to be text-centric, and…
MeetKai, a leading artificial intelligence (AI) company, has launched Functionary-small-v2.4 and Functionary-medium-v2.4, new deep learning models that offer significant improvements in the field of Large Language Models (LLMs). These advanced versions showcase the company's focus on enhancing the practical application of AI and open-source models.
Designed for boosting real-world applications and utility, Functionary 2.4 sets itself…
Large Language Models (LLMs) have gained immense technological prowess over the recent years, thanks largely to the exponential growth of data on the internet and ongoing advancements in pre-training methods. Despite their progress, LLMs' dependency on English datasets limits their performance in other languages. This challenge, known as the "curse of multilingualism," suggests that models…
Developers and data scientists who use Large Language Models (LLMs) such as GPT-4 to leverage their AI capabilities often need tools to help navigate the complex processes involved. A selection of these crucial tools are highlighted here.
Hugging Face extends beyond its AI platform to offer a comprehensive ecosystem for hosting AI models, sharing datasets,…
In the field of audio processing, the ability to separate overlapping speech signals amidst noise is a challenging task. Previous approaches, such as Convolutional Neural Networks (CNNs) and Transformer models, while groundbreaking, have faced limitations when processing long-sequence audio. CNNs, for instance, are constrained by their local receptive capabilities while Transformers, though skillful at modeling…
Data is as valuable as currency in today's world, leading many industries to face the challenge of sharing and enhancing data across various entities while also protecting privacy norms. Synthetic data generation has provided organizations with a means to overcome privacy obstacles and unlock potential for collaborative innovation. This is especially relevant in distributed systems,…
The impressive advancements that have been seen in artificial intelligence, specifically in Large Language Models (LLMs), have seen them become a vital tool in many applications. However, the high cost associated with the computational power needed to train these models has limited their accessibility, stifling wider development. There have been several open-source resources attempting to…
Effector is a new Python library developed to address the limitations of traditional methods used to explain black-box models. Current global feature effect methods, including Partial Dependence Plots (PDP) and SHAP Dependence Plots, often fall short in explaining such models, especially when feature interactions or non-uniform local effects occur, resulting in potentially misleading interpretations.
To overcome…
Visually rich documents (VRDs) such as invoices, utility bills, and insurance quotes present unique challenges in terms of information extraction (IE). The varied layouts and formats, coupled with both textual and visual properties, require complex, resource-intensive solutions. Many existing strategies rely on supervised learning, which necessitates a vast pool of human-labeled training samples. This not…