To better predict the risks of extreme weather events due to climate change, scientists at MIT have developed a method that refines the predictions from large, coarse climate models. The key to this approach is leveraging machine learning and dynamical systems theory to make the climate models' large-scale simulations more realistic. By correcting the climate…
Scientists from MIT have developed a technique that helps to fine-tune predictive models for extreme weather events by combining machine learning and dynamical systems theory. Currently, climate models are run decades and even centuries in advance to assess a community's risk to extreme weather but these generally operate at a rough resolution. As a result,…
Researchers at the Massachusetts Institute of Technology (MIT) have developed a new method to improve the accuracy of large-scale climate models. These models, used by policymakers to understand the future risk of extreme weather like flooding, often lack precise data for smaller scales without considerable computational power. By combining machine learning with dynamical systems theory,…
A team of scientists from MIT's Department of Mechanical Engineering has developed a new method using machine learning to correct and enhance prediction accuracy in climate models. These advancements could provide significantly greater insights into the frequency of extreme weather events with more localized precision, improving the ability to plan and mitigate for future climatic…
Policymakers rely on global climate models to assess a community’s risk of extreme weather. These models, run decades and even centuries forward, gauge future climate conditions over large areas but have a coarse resolution and are not definitive at the city level. To remedy this overlap, they may combine predictions from a coarse model with…
MIT scientists have developed a method to "correct" the predictions made by climate change models, thus enabling more accurate risk analysis of extreme weather events. Specifically, they have combined machine learning with dynamical systems theory to fine-tune global climate model predictions for the long-term. This enables policymakers and planners to assess community-specific risks of extreme…
Climate change experts are turning to an innovative approach to better predict extreme weather events and the impacts of climate change on specific locations. This new methodology "corrects" global climate models, combining machine learning with dynamical systems theory to bring the models' simulations much closer to expected real-world patterns. This approach can help policymakers effectively…
Researchers from the Massachusetts Institute of Technology (MIT) have developed a new method that can make long-term predictions regarding the risk of extreme weather events more accurate. The new technique combines machine learning with dynamical systems theory to make better predictions about extreme weather events such as floods and tropical cyclones in specific areas.
Currently, policymakers…
Policymakers usually depend on coarse-resolution global climate models to assess a community's risk of extreme weather. By looking decades and even centuries into the future, these models can predict large-scale weather patterns but struggle to provide specific data for smaller locations. To estimate the risk of an area such as Boston experiencing extreme weather events…
Researchers at MIT have developed a method that improves the accuracy of predictions generated by climate models. The technique involves the use of machine learning and dynamical systems theory to make predictions from coarse climate models more accurate. These models, which are used to predict the impact of climate change including extreme weather events, work…
Scientists from MIT and the Pacific Northwest National Laboratory have developed a way to increase the accuracy of large-scale climate models, allowing for more precise predictions of extreme weather incidents in specific locations. Their process involves using machine learning in tandem with existing climate models to make the models' predictions closer to real-world observations. This…
Artificial intelligence (AI) models today have become increasingly complex with billions of parameters. Existing AI models are largely inaccessible to many due to a lack of widespread knowledge of how to create and control them. MosaicML, a company co-founded by Jonathan Frankle PhD '23 and MIT Associate Professor Michael Carbin, strives to overcome this issue.…