Language models such as GPT-3 have demonstrated impressive general knowledge and understanding. However, they have limitations when required to handle specialized, niche topics. Therefore, a deeper domain knowledge is necessary for effectively researching specific subject matter. This can be equated to asking a straight-A high school student about quantum physics. They might be smart, but…
In the field of Natural Language Processing (NLP), optimizing the Retrieval-Augmented Generation (RAG) pipeline often presents a significant challenge. Developers strive to strike the right balance among various components such as large language models (LLMs), embeddings, query transformations, and re-rankers in order to achieve optimal performance. With a lack of effective guidance and user-friendly tools,…
Open foundation models like BERT, CLIP, and Stable Diffusion signify a new era in the technology space, particularly in artificial intelligence (AI). They provide free access to model weights, enhancing customization, and accessibility. While this development brings benefits to innovation and research, it also introduces fresh risks and potential misuse, which has initiated a critical…
Researchers from several esteemed institutions, including DeepWisdom, have launched a groundbreaking tool for data science problem-solving called the Data Interpreter. This solution leverages Large Language Models (LLMs) to address intricate challenges in the field of data science, marking a novel approach to navigating the vast and ever-changing data world. The Data Interpreter was conceived through…
Optical flow estimation aims to analyze dynamic scenes in real-time with high accuracy, a critical aspect of computer vision technology. Previous methods of attaining this have often stumbled upon the problem of computational versus accuracy. Though deep learning has improved the accuracy, it has come at the cost of computational efficiency. This issue is particularly…
Reinforcement Learning from Human Feedback (RLHF) is a technique that improves the alignment of Pretrained Large Language Models (LLMs) with human values, enhancing their usefulness and reliability. However, training LLMs with RLHF is a resource-intensive and complex task, posing significant obstacles to widespread implementation due to its computational intensity.
In response to this challenge, several methods…
Enhancing Large Language Models (LLMs) capabilities remains a key challenge in artificial Intelligence (AI). LLMs, digital warehouses of knowledge, must stay current and accurate in the ever-evolving information landscape. Traditional ways of updating LLMs, such as retraining or fine-tuning, are resource-intensive and carry the risk of catastrophic forgetting, which means new learning can override valuable…
Microsoft is taking significant steps to more deeply incorporate artificial intelligence (AI) into the workplace. They have introduced an array of new plugins, collectively known as Copilot, which aim to enhance the user experience across its Office suite of products, including Word, Excel, PowerPoint, and Outlook.
The new plugins, which essentially function as a ChatGPT for…
The field of large language models (LLMs), a subset of artificial intelligence that attempts to mimic human-like understanding and decision-making, is a focus for considerable research efforts. These systems need to be versatile and broadly intelligent, which means a complex development process that can avoid "hallucination", or the production of nonsensical outputs. Traditional training methods…
KAIST AI's introduction of the Odds Ratio Preference Optimization (ORPO) represents a novel approach in the field of pre-trained language models (PLMs), one that may revolutionize model alignment and set a new standard for ethical artificial intelligence (AI). In contrast to traditional methods, which heavily rely on supervised fine-tuning (SFT) and reinforcement learning with human…
The emergence of large language models (LLMs) is making significant advancements in machine learning, offering the ability to mimic human language which is critical for many modern technologies from content creation to digital assistants. A major obstacle to progress, however, has been the processing speed when generating textual responses. This is largely due to the…