Skip to content Skip to sidebar Skip to footer

Applications

Q*: An Adaptable AI Strategy to Enhance LLM Efficacy in Reasoning Assignments

Large Language Models (LLMs) have made significant strides in addressing various reasoning tasks, such as math problems, code generation, and planning. However, as these tasks become more complex, LLMs struggle with inconsistencies, hallucinations, and errors. This is especially true for tasks requiring multiple reasoning steps, which often operate on a "System 1" level of thinking…

Read More

Imbue Group Develops 70B-Parameter Model from Ground Up: Advances in Pre-Training, Assessment, and Infrastructure for Enhanced AI Capability

The Imbue Team announced significant progress in their recent project in which they trained a 70-billion-parameter language model from the ground up. This ambitious endeavor is aimed at outperforming GPT-4 in zero-shot scenarios on several reasoning and coding benchmarks. Notably, they achieved this feat with a training base of just 2 trillion tokens, a reduction…

Read More

Is it True or False? NOCHA: A Fresh Standard for Assessing Long-Context Reasoning in Language Model Systems.

Natural Language Processing (NLP), a field within artificial intelligence, is focused on creating ways for computers and human language to interact. It's used in many technology sectors such as machine translation, sentiment analysis, and information retrieval. The challenge presently faced is the evaluation of long-context language models, which are necessary for understanding and generating text…

Read More

Overcoming the ‘Lost-in-the-Middle’ Issue in Extensive Language Models: A Significant Progress in Adjusting Attention

Large language models (LLMs), despite their significant advancements, often struggle in situations where information is spread across long stretches of text. This issue, referred to as the "lost-in-the-middle" problem, results in a diminished ability for LLMs to accurately find and use information that isn't located near the start or end of the text. Consequently, LLMs…

Read More

Overcoming the ‘Lost-in-the-Middle’ Dilemma in Large Linguistic Models: A Revolutionary Advance in Attention Calibration

Large language models (LLMs), despite their advancements, often face difficulties in managing long contexts where information is scattered across the entire text. This phenomenon is referred to as the ‘lost-in-the-middle’ problem, where LLMs struggle to accurately identify and utilize information within such contexts, especially as it becomes distant from the beginning or end. Researchers from…

Read More

Hugging Face introduces an improved version of Open LLM Leaderboard 2, with advanced benchmarks, more equitable scoring, and boosted community participation in assessing language models.

Hugging Face has unveiled the Open LLM Leaderboard v2, a significant upgrade to its initial leaderboard used for ranking language models. The new version aims to address the challenges faced by the initial model, featuring refined evaluation methods, tougher benchmarks, and a fairer scoring system. Over the last year, the original leaderboard had become a…

Read More

Hugging Face unveils an improved version of Open LLM Leaderboard 2, offering stricter benchmarks, more equitable scoring methods, and increased community cooperation for assessing language models.

Hugging Face has released a significant upgrade to its Leaderboard for open-source language models (LLMs) geared towards addressing existing constraints and introducing better evaluation methods. Notably, the upgrade known as Open LLM Leaderboard v2 offers more stringent benchmarks, presents advanced evaluation techniques, and implements a fairer scoring system, fostering a more competitive environment for LLMs. The…

Read More

Google launches Gemma 2 Series: Sophisticated LLM Models in 9B and 27B versions trained on 13T tokens.

Google has introduced two new advanced AI models, the Gemma 2 27B and 9B, underlining their continued commitment to revolutionizing AI technology. Capable of superior performance but with a compact structure, these models represent significant advancements in AI language processing. The larger model, the Gemma 2 27B, boasts 27 billion parameters, allowing it to handle more…

Read More

EAGLE-2: A Resourceful Speculative Sampling Technique Delivering Accelerated Ratios from 3.05x to 4.26x, Resulting in a 20%-40% Superior Speed than EAGLE-1.

Large Language Models (LLMs) have made advancements in several sectors such as chatbots and content creation but struggle with extensive computational cost and time required for real-time applications. While various methods have attempted to resolve this, they are often not context-aware and result in inefficient acceptance rates of draft tokens. To address this, researchers from…

Read More

Introducing Sohu: The First Global Transformer Specialized ASIC Chip.

The Sohu AI chip created by Etched holds the title as the fastest AI chip currently available, redefining AI computation and application capabilities. It enables processing of over 500,000 tokens per second on the Llama 70B model, outperforming traditional GPUs. An 8xSohu server can even replace 160 H100 GPUs, demonstrating its superior power and efficiency.…

Read More

Researchers from New York University have released Cambrian-1: Improving Multimodal AI with Vision-Based Large Language Models for Better Performance and Adaptation in Actual World Scenarios.

Multimodal large language models (MLLMs), which integrate sensory inputs like vision and language, play a key role in AI applications, such as autonomous vehicles, healthcare and interactive AI assistants. However, efficient integration and processing of visual data with textual details remain a stumbling block. The traditionally used visual representations, that rely on benchmarks such as…

Read More