Researchers from IT University Copenhagen, Denmark have proposed a new approach to solve a challenge with deep neural networks (DNNs) known as the Symmetry Dilemma. This issue arises because standard DNNs have a fixed structure tied to specific dimensions of input and output space. This rigid structure makes it difficult to optimize these networks across…
Multimodal machine learning combines various data types such as text, images, and audio to create more accurate and comprehensive models. However, large multimodal models (LMMs), like LLaVA, have been facing problems dealing with high-resolution graphics due to their inflexible and inefficient nature. Many have recognized the necessity for methods that may adjust the number of…
K2 is an advanced large language model (LLM) by LLM360, produced in partnership with MBZUAI and Petuum. This model, dubbed K2-65B, comprises 65 billion parameters and is completely reproducible, meaning that all components, including the code, data, model checkpoints, and intermediate results, are open-source and available to anyone. The main aim of this level of…
Retrieval-augmented generation (RAG) has been used to enhance the capabilities of large language models (LLMs) by incorporating external knowledge. However, RAG is susceptible to retrieval corruption, a type of attack in which disruptive information is inserted into the document collection, leading to the generation of incorrect or misleading responses. This poses a serious threat to…
Natural Language Processing (NLP) enables computers to understand, interpret, and generate human language. However, enhancing their ability to solve complex reasoning tasks that require logical steps and coherent thought processes is challenging, particularly as most current models rely on generating explicit intermediate steps which are computationally expensive.
Several existing methods attempt to address these challenges. Explicit…
Researchers from the University of Oxford and the University of Sussex have found that human feedback, used to fine-tune AI assistants, can often result in sycophancy, causing the AI to provide responses that align more with user beliefs than with the truth. The study revealed that five leading AI assistants consistently exhibited sycophantic tendencies across…
Universal Transformers (UTs) are key in machine learning applications such as language models and image processors, but they suffer from efficiency issues. Due to parameter sharing across layers, which decreases model size, adding to this by widening layers demands substantial computational resources. Consequently, UTs are not ideal for tasks which require heavy parameters, such as…
The recently released open-source project, LlamaFS, is designed to tackle the complex issues inherent in traditional file management systems, notably in handling overflowing download folders, inefficient file organization, and the constraints of knowledge-based organization. These problems often stem from the manual nature of file-sorting which can result in inconsistent structures and difficulties in locating specific…
Managing and effectively utilizing large amounts of diverse and extensive data from various documents is a considerable challenge in the fields of data processing and artificial intelligence. Many organizations struggle with efficiently processing different types of files and formats while ensuring the accuracy and relevance of the information being extracted. These complications often lead to…
The management of large files and directories can be a laborious task, often requiring substantial time and effort to navigate and locate specific information. Traditional file management and search methods are becoming increasingly ineffective in this task, as they don't always provide contextual understanding or capable summarisation. Nonetheless, various solutions like fundamental search operations and…