Reinforcement learning (RL) is a branch of artificial intelligence where an agent learns to make decisions through interaction with its environment. The principles of RL rely on concepts of agents, environments, states, actions, reward signals, policies, value functions, and a balance of exploration and exploitation.
Agents interact with their environment, which provides different states that form…
Generic transport equations, which consist of time-dependent partial differential equations (PDEs), model the movement of extensive properties like mass, momentum, and energy in physical systems. Originating from conservation laws, such equations shed light on a range of physical phenomena, extending from mass diffusion to Navier-Stokes equations. In science and engineering fields, these PDEs can be…
The application of Graph Neural Network (GNN) for motion planning in robotic systems has surfaced as an innovative solution for efficient strategy formation and navigation. Using GNN, this approach can assess the graph structure of an environment to make quick and informed decisions regarding the best path for a robot to take. Three major systems…
Natural Language Processing (NLP) is an evolving field in which large language models (LLMs) are becoming increasingly important. The fine-tuning of these models has emerged as a critical process for enhancing their specific functionalities without imposing substantial computational demands. In this regard, researchers have been focusing on LLM modifications to ensure optimal performance even with…
Significant advancements have been made in the field of robotics research with the integration of large language models (LLMs) into robotic systems. This development has enabled robots to better tackle complex tasks that demand detailed planning and sophisticated manipulation, bridging the gap between high-level planning and robotic control. However, challenges persist in transforming the remarkable…
Researchers in the field of large language models (LLMs) are focused on training these models to respond more effectively to human-generated text. This requires aligning the models with human preferences, reducing bias, and ensuring the generation of useful and safe responses, a task often achieved through supervised fine-tuning and complex pipelines like reinforcement learning from…
Neural Architecture Search (NAS) is a method used by researchers to automate the development of optimal neural network architectures. These architectures are created for a specific task and are then evaluated against a performance metric on a validation dataset. However, earlier NAS methods encountered several issues due to the need to extensively train each candidate…
The recent rise in prominent transformer-based language models (LMs) has underscored the need for research into their workings. Understanding these mechanisms is essential for the safety, fairness, reduction of biases and errors of advanced AI systems, particularly in critical contexts. Therefore, there has been an increase in research within the Natural Language Processing (NLP) community,…
The rising demand for AI and Machine Learning (ML) has placed an emphasis on ML expertise in the current job market, elevating the significance of Python as a primary programming language for ML tasks. Adaptive courses in ML using Python are emerging as a vital tool for professionals looking to enhance their skills, switch careers,…