Deep learning is continuously evolving with attention mechanism playing an integral role in improving sequence modeling tasks. However, this method significantly bogs down computation with its quadratic complexity, especially in hefty long-context tasks such as genomics and natural language processing. Despite efforts to enhance its computational efficiency, existing techniques like Reformer, Routing Transformer, and Linformer…
Artificial intelligence (AI) is becoming more sophisticated, requiring models capable of processing large-scale data and providing precise, valuable insights. The aim of researchers in this field is to develop systems that are capable of continuous learning and adaptation, ensuring relevance in dynamic environments.
One of the main challenges in developing AI models is the issue of…
The shift towards renewable energy sources and increased consumer demand due to electric vehicles and heat pumps has significantly influenced the electricity generation landscape. This shift has also resulted in a grid that is subject to fluctuating inputs, thus necessitating an adaptive power infrastructure. Research suggests that bus switching at the substation can help stabilize…
Natural Language Processing (NLP) involves computers understanding and interacting with human language through language models (LMs). These models generate responses across various tasks, making the quality assessment of responses challenging. However, as proprietary models like GPT-4 increase in sophistication, they often lack transparency, control, and affordability, thus prompting the need for reliable open-source alternatives.
Existing…
Researchers have introduced an innovative algorithm known as CIPHER that optimizes large language models (LLMs) by interpreting user feedback edits. LLMs are becoming increasingly popular for a range of applications, with developers constantly enhancing the capabilities of these models. However, one of the key challenges is the alignment and personalization of these models to specific…
Multitask learning (MLT) is a method used to train a single model to perform various tasks simultaneously by utilizing shared information to boost performance. Despite its benefits, MLT poses certain challenges, such as managing large models and optimizing across tasks.
Current solutions to under-optimization problems in MLT involve gradient manipulation techniques, which can become computationally…
Arrays and lists form the basis of data structures in programming, fundamental concepts often presented to beginners. First appeared in the 1957 Fortran and still vital in languages like Python today, arrays are popular due to their simplicity and versatility, allowing data to be organized in multidimensional grids. However, dense arrays, while performance-driven, do not…
Large Language Models (LLMs) have enjoyed a surge in popularity due to their excellent performance in various tasks. Recent research focuses on improving these models' accuracy using external resources including structured data and unstructured/free text. However, numerous data sources, like patient records or financial databases, contain a combination of both kinds of information. Previous chat…
Machine learning is a growing field that develops algorithms to allow computers to learn and improve performance over time. This technology has significantly impacted areas like image recognition, natural language processing, and personalized recommendations. Despite its advancements, machine learning faces challenges due to the opacity of its decision-making processes. This is especially problematic in areas…
Large Language Models (LLMs) signify a major stride in artificial intelligence with their strong natural language understanding and generation capabilities. They can perform plenty of tasks ranging from powering virtual assistants to generating substantial content and conducting profound data analysis. Nevertheless, one obstacle LLMs face is generating factually correct responses. Often, due to the wide…
Traditional fully-connected feedforward neural networks or Multi-layer Perceptrons (MLPs), while effective, suffer from limitations such as high parameter usage and lacking interpretability in complex models such as transformers. These issues have led to the exploration of more efficient and effective alternatives. One such refined approach that has been attracting attention is the Kolmogorov-Arnold Networks (KANs),…
Researchers from East China University of Science and Technology and Peking University have conducted a survey exploring the use of Retrieval-Augmented Language Models (RALMs) within the field of Natural Language Processing (NLP). Traditional methods used in this field, such as Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and Long Short Term Memory (LSTM), have…