Skip to content Skip to sidebar Skip to footer

Artificial Intelligence

To enhance AI assistant development, begin by emulating the unpredictable conduct of humans.

Artificial Intelligence (AI) that can work effectively with humans requires a robust model of human behaviour. However, humans often behave irrationally, limiting their decision-making abilities. Researchers at MIT and the University of Washington have developed a model for predicting an agent's behaviour (whether human or machine) by considering computational constraints that affect problem-solving, which they refer…

Read More

This compact semiconductor provides protection for user information while facilitating streamlined computation on a mobile device.

Health-monitoring apps powered by advanced machine-learning (ML) models could be more secure and still run efficiently on devices, according to researchers from MIT and the MIT-IBM Watson AI Lab. Though the models require vast amounts of data shuttling between a smartphone and a central memory server, using a machine-learning accelerator can speed up the process…

Read More

Assisting Olympic athletes in enhancing their performance, step by step.

MIT startup Striv has developed tactile sensing technology that inserts into shoes, effectively tracking force, movement, and form via algorithms that interpret tactile data. The developer, Axl Chen, initially applied his work in a virtual reality gaming context but pivoted to athletics, and several professional athletes, including US marathoner Clayton Young and Olympian Damar Forbes,…

Read More

This AI Study Demonstrates AI Model Breakdown as Consecutive Model Generations are Sequentially Trained on Simulated Data.

The phenomenon of "model collapse" represents a significant challenge in artificial intelligence (AI) research, particularly impacting large language models (LLMs). When these models are continually trained on data created by earlier versions of similar models, they lose their ability to accurately represent the underlying data distribution, deteriorating in effectiveness over successive generations. Current training methods of…

Read More

Enhancing Memory for Extensive NLP Models: An Examination of Mini-Sequence Transformer

The rapid development of Transformer models in natural language processing (NLP) has brought about significant challenges, particularly with memory requirements for the training of these large-scale models. A new paper addresses these issues by presenting a new methodology called MINI-SEQUENCE TRANSFORMER (MST) which optimizes memory usage during long-sequence training without compromising performance. Traditional approaches such as…

Read More

OuteAI Introduces Innovative Lite-Oute-1 Variants: Lite-Oute-1-300M and Lite-Oute-1-65M as Robust Yet Space-Saving AI Platforms.

OuteAI has released two new models of its Lite series, namely Lite-Oute-1-300M and Lite-Oute-1-65M, which are designed to maintain optimum efficiency and performance, making them suitable for deployment across various devices. The Lite-Oute-1-300M model is based on the Mistral architecture and features 300 million parameters, while the Lite-Oute-1-65M, based on the LLaMA architecture, hosts around…

Read More

To enhance an AI assistant’s capabilities, begin by simulating the unpredictable actions of human beings.

Researchers from MIT and the University of Washington have developed a model that predicts human behavior by considering computational constraints that limit an individual's problem-solving ability. This model can be used to estimate a person's ‘inference budget’, or time available for problem-solving, based on their past actions. It can then predict their future behavior. Drawing from…

Read More