Skip to content Skip to sidebar Skip to footer

Artificial Intelligence

In what way does KAN (Kolmogorov-Arnold Networks) serve as a superior alternative to Multi-Layer Perceptrons (MLPs)?

Traditional fully-connected feedforward neural networks or Multi-layer Perceptrons (MLPs), while effective, suffer from limitations such as high parameter usage and lacking interpretability in complex models such as transformers. These issues have led to the exploration of more efficient and effective alternatives. One such refined approach that has been attracting attention is the Kolmogorov-Arnold Networks (KANs),…

Read More

Creating the strategy for the future.

Eric Liu and Ashely Peake, first-year students in the Social and Engineering Systems (SES) doctoral program within the MIT Institute for Data, Systems, and Society (IDSS), started their academic journey keen on overcoming housing inequality issues. They had their first hands-on research experience by participating in the MIT Policy Hackathon. Run by students from IDSS…

Read More

An Exploration of RAG and RAU: Progressing Natural Language Processing Through the Utilization of Retrieval-Augmented Language Models.

Researchers from East China University of Science and Technology and Peking University have conducted a survey exploring the use of Retrieval-Augmented Language Models (RALMs) within the field of Natural Language Processing (NLP). Traditional methods used in this field, such as Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and Long Short Term Memory (LSTM), have…

Read More

An Innovative AI Strategy to Improve Language Models: Predicting Multiple Tokens

Language models that can recognize and generate human-like text by studying patterns from vast datasets are extremely effective tools. Nevertheless, the traditional technique for training these models, known as "next-token prediction," has its shortcomings. The method trains models to predict the next word in a sequence, which can lead to suboptimal performance in more complicated…

Read More

Nexa AI reveals Octopus v4, a unique AI method using operational tokens to converge a variety of open-source designs.

The landscape for open-source Large Language Models (LLMs) has expanded rapidly, especially after Meta's launches of the Llama3 model and its successor, Llama 2, in 2023. Notable open-source LLMs include Mixtral-8x7B by Mistral, Alibaba Cloud’s Qwen1.5 series, Smaug by Abacus AI, and Yi models from 01.AI, which focus on data quality. LLMs have transformed the Natural…

Read More

Approaching Equitable AI: Techniques for Individual Instance Delearning Without the Need for Reeducation

Machine learning models are increasingly being used in critical applications, leading to concerns about their vulnerability to manipulation and exploitation. Once trained on a dataset, these models can retain information permanently, making them susceptible to privacy breaches, adversarial attacks, and unintended biases. There is a pressing need for techniques allowing these models to 'unlearn' specific…

Read More

Developing custom coding languages for effective visual artificial intelligence systems.

Associate Professor Jonathan Ragan-Kelley at the MIT Department of Electrical Engineering and Computer Science is a creator behind many innovative technologies used in photographic image processing and editing. Ragan-Kelley has contributed to the visual effects industry and was instrumental in designing the Halide programming language, a tool widely used in the photo editing sector. Ragan-Kelley,…

Read More

Hidden Shield: An Engineered Machine Learning Structure Aimed at Enhancing the Security of Text-to-Image T2I Generative Networks

The rise of machine learning has led to advancements in numerous fields, including arts, media, and the expansion of text-to-image (T2I) generative networks. These networks have the ability to produce precise images from text descriptions, presenting exciting opportunities for creators, but also triggering concerns over potential misuse such as generating harmful content. Current measures to…

Read More

Leading Courses on ChatGPT in 2024

In today's fast-paced world, understanding and mastering ChatGPT, a large language model, has become indispensable due to its potential to enhance productivity, boost creativity, and automate tasks. By gaining skills in ChatGPT, individuals can better navigate the shifting landscape of artificial intelligence and its applications. Here are some top ChatGPT courses to consider in 2024. 1.…

Read More

Stanford scientists investigate the capabilities of medium-scale language models in handling clinical question-answering operations.

In recent times, large language models (LLMs), such as Med-PaLM 2 and GPT-4, have shown impressive performance on clinical question-answer (QA) tasks. However, these models are restrictive due to their high costs, ecological unsustainability, and paid only accessibility for researchers. A promising approach is on-device AI, which uses local devices to run language models. This…

Read More

Over 15 AI-Based Instruments for Developers (2024)

GitHub Copilot, an AI-powered coding assistant, is among several AI tools designed for developers' efficiency. Harnessing OpenAI's Codex language model, features include completing lines of code and aiding security checks. Another similar tool is Amazon's CodeWhisperer, a machine-learning-driven code generator providing real-time coding recommendations. CodeWhisperer suggests snippets to entire functions, enhancing code quality, and automating repetitive…

Read More

Google DeepMind Unveils Med-Gemini: A Pioneering Suite of AI Models Transforming Medical Diagnosis and Clinical Judgement

Artificial intelligence (AI) has increasingly become a pivotal tool in the medical industry, assisting clinicians with tasks such as diagnosing patients, planning treatments, and staying up-to-date with the latest research. Despite this, current AI models face challenges in efficiently analyzing the wide array of medical data which includes images, videos and electronic health records (EHRs).…

Read More