MIT researchers have introduced a new technique giving animation artists more control over their 2D and 3D characters. The method uses mathematical functions, known as barycentric coordinates, which determine how shapes can move, bend, and stretch in space. This allows artists to shape the movements of an animated character according to their vision.
Traditionally, artists have…
Researchers from MIT have utilized deep learning, a form of artificial intelligence, to find a class of compounds that can kill drug-resistant bacteria, specifically methicillin-resistant Staphylococcus aureus (MRSA). The significance of their research is that these compounds have low toxicity against human cells, making them suitable candidates for therapeutic drugs.
Crucially, the researchers can understand the…
Researchers from Massachusetts Institute of Technology (MIT) have conducted a study which demonstrates that sentences with complex grammar or unexpected meaning tend to stimulate the brain's key language processing centers significantly more than straightforward or nonsensical sentences. The study was led by Evelina Fedorenko, an Associate Professor of Neuroscience at MIT, and Greta Tuckute, a…
With AI technology increasingly being used in business, it is crucial to involve end-users in the process. End-users are those individuals, often with no background in AI, who interact with the application in the course of their work. For this purpose, the open source team behind Taipy Enterprise Platform has developed a system of scenarios…
A novel technique unveiled by researchers at MIT could provide artists more flexibility while animating characters in movies and video games. The approach involves producing mathematical functions called barycentric coordinates to determine how 2D and 3D shapes can bend, stretch, and manoeuvre through space. Artists are thus provided with multiple options of barycentric coordinate functions…