Skip to content Skip to sidebar Skip to footer

Artificial Intelligence

Cobra for Multimodal Language Learning: Streamlining Multimodal Big Language Models (MLLM) with Linear Processing Complexity

The exponential advancement of Multimodal Large Language Models (MLLMs) has triggered a transformation in numerous domains. Models like ChatGPT- that are predominantly constructed on Transformer networks billow with potential but are hindered by quadratic computational complexity which affects their efficiency. On the other hand, Language-Only Models (LLMs) lack adaptability due to their sole dependence on…

Read More

Introducing Jan: A Fully Offline, Open-Source Alternative to ChatGPT that Operates Entirely on Your Computer

Jan, a pioneering open-source ChatGPT alternative, has been introduced by a team of researchers. This new invention operates locally on one's computer and is a significant progress in Artificial Intelligence (AI), aiming to democratize access to AI technologies. Jan enables users to have the power of ChatGPT on their desktop with their preferred models, configurations,…

Read More

LMU Munich’s Zigzag Mamba: Transforming the Creation of High-Resolution Visual Content through Advanced Diffusion Models

In the world of computational models for visual data processing, there remains a consistent pursuit for models that merge efficiency with the capability to manage large-scale, high-resolution datasets. Traditional models have often grappled with scalability and computational efficiency, particularly when used for high-resolution image and video generation. Much of this challenge arises from the quadratic…

Read More

What is the future outlook for generative AI?

At the "Generative AI: Shaping the Future" symposium, kickstarting MIT's Generative AI Week, iRobot co-founder and keynote speaker, Rodney Brooks, warned attendees not to overly idealise the potential of this emerging technology. Both OpenAI's ChatGPT and Google's Bard are examples of increasingly powerful tools underpinned by generative AI. Brooks emphasised that the unsubstantiated hype around…

Read More

AI speeds up solution-finding in intricate situations.

Efficiently routing holiday packages is an intricate computational problem for delivery companies such as FedEx. So complex is the problem that companies often implement specialized software, termed a mixed-integer linear programming (MILP) solver. Yet, the solver may take prolonged times to offer a solution, leading companies to conclude midway, settling for suboptimal solutions bounded by…

Read More

Researchers from Alibaba and Renmin University of China have unveiled mPLUG-DocOwl 1.5, a unified framework for understanding documents without the need for Optical Character Recognition (OCR).

Researchers from Alibaba Group and the Renmin University of China have developed an advanced version of MultiModal Large Language Models (MLLMs) to better understand and interpret images rich in text content. Named DocOwl 1.5, this innovative model uses Unified Structure Learning to enhance the efficiency of MLLMs across five distinct domains: document, webpage, table, chart,…

Read More

Tnt-LLM: An Innovative Machine Learning System Unifying the Transparency of Manual Methods with the Broad Scope of Automated Text Grouping and Subject Modeling.

"Text mining" refers to the discovery of new patterns and insights within large amounts of textual data. Two essential activities in text mining are the creation of a taxonomy - a collection of structured, canonical labels that characterize features of a corpus - and text classification, which assigns labels to instances within the corpus according…

Read More

HuggingFace unveils Quanto: A Python-based Quantization Toolkit designed to decrease the computational and memory expenses associated with the assessment of Deep Learning Models.

HuggingFace researchers have developed a new tool called Quanto to streamline the deployment of deep learning models on devices with limited resources, such as mobile phones and embedded systems. The tool addresses the challenge of optimizing these models by reducing their computational and memory footprints. It achieves this by using low-precision data types, such as…

Read More

FeatUp: An Advanced Machine Learning Algorithm that Enhances the Resolution of Deep Neural Networks for Superior Performance in Computer Vision Activities

The capabilities of computer vision studies have been vastly expanded due to deep features, which can unlock image semantics and facilitate diverse tasks, even using minimal data. Techniques to extract features from a range of data types – for example, images, text, and audio – have been developed and underpin a number of applications in…

Read More

Observing Everything: LLaVA-UHD Can Detect High-Resolution Images in Any Aspect Ratio

Large language models like GPT-4, while powerful, often struggle with basic visual perception tasks such as counting objects in an image. This can be due to the way these models process high-resolution images. Current AI systems can mainly perceive images at a fixed low resolution, leading to distortion, blurriness, and loss of detail when the…

Read More

The team of researchers from Texas A&M University presents ComFormer, a new machine learning method for predicting properties of crystal materials.

Research in materials science is increasingly focusing on the rapid discovery and characterization of materials with specific attributes. A key aspect of this research is the comprehension of crystal structures, which are naturally complex due to their periodic and infinite nature. This complexity presents significant challenges when attempting to model and predict material properties, difficulties…

Read More