Skip to content Skip to sidebar Skip to footer

Artificial Intelligence

Scientists at Northeastern University suggest NeuFlow: An extremely effective Optical Flow Structure that tackles both precision and computational cost issues.

Optical flow estimation aims to analyze dynamic scenes in real-time with high accuracy, a critical aspect of computer vision technology. Previous methods of attaining this have often stumbled upon the problem of computational versus accuracy. Though deep learning has improved the accuracy, it has come at the cost of computational efficiency. This issue is particularly…

Read More

Google AI introduces PERL, a method that utilizes reinforcement learning efficiently. This technique can train a reward model and refine a language model policy with LoRA.

Reinforcement Learning from Human Feedback (RLHF) is a technique that improves the alignment of Pretrained Large Language Models (LLMs) with human values, enhancing their usefulness and reliability. However, training LLMs with RLHF is a resource-intensive and complex task, posing significant obstacles to widespread implementation due to its computational intensity. In response to this challenge, several methods…

Read More

What does the future entail for AI that is capable of generating its own content?

Generative artificial intelligence (AI) possesses great potential but equally great risks if misused or overestimated, warned Rodney Brooks, co-founder of iRobot, at MIT’s "Generative AI: Shaping the Future" symposium. The event kicked off the university's Generative AI Week on 28 November and attracted hundreds of academia and industry representatives to the institution's Kresge Auditorium. Generative…

Read More

AI enhances the speed of solving issues in intricate situations.

The logistics of delivering holiday packages by companies such as FedEx requires specialized software for efficient routing, given the immense complexity of the optimization problem. The software currently in use, known as a mixed-integer linear programming (MILP) solver, often takes days to arrive at a solution, and even then, the companies have to accept solutions…

Read More

IBM and Princeton’s AI research introduces Larimar, a unique, brain-based machine learning structure designed to improve Long-lived machines (LLMs) through a disseminated episodic memory.

Enhancing Large Language Models (LLMs) capabilities remains a key challenge in artificial Intelligence (AI). LLMs, digital warehouses of knowledge, must stay current and accurate in the ever-evolving information landscape. Traditional ways of updating LLMs, such as retraining or fine-tuning, are resource-intensive and carry the risk of catastrophic forgetting, which means new learning can override valuable…

Read More

Microsoft’s latest AI-driven Copilot Plugins transform efficiency throughout Office.

Microsoft is taking significant steps to more deeply incorporate artificial intelligence (AI) into the workplace. They have introduced an array of new plugins, collectively known as Copilot, which aim to enhance the user experience across its Office suite of products, including Word, Excel, PowerPoint, and Outlook. The new plugins, which essentially function as a ChatGPT for…

Read More

Agent-FLAN: Transforming AI Through Advanced Broad Language Model Agents + Boosted Performance, Efficiency, and Dependability.

The field of large language models (LLMs), a subset of artificial intelligence that attempts to mimic human-like understanding and decision-making, is a focus for considerable research efforts. These systems need to be versatile and broadly intelligent, which means a complex development process that can avoid "hallucination", or the production of nonsensical outputs. Traditional training methods…

Read More

What is the outlook for generative AI in the future?

At the “Generative AI: Shaping the Future” symposium held on Nov. 28, Rodney Brooks, iRobot co-founder and a keynote speaker, cautioned attendees against overestimating the capabilities of generative AI. Noting that “No one technology has ever surpassed everything else”, Brooks stressed that flippant assumptions about the inferred abilities of generative AI could lead to failure.…

Read More

A single step allows AI to produce high-grade images at a speed 30 times quicker.

In the age of artificial intelligence, computers can generate "art" using diffusion models. However, this often involves a complex, time-consuming process requiring multiple iterations for the algorithm to perfect the image. MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) researchers have now launched a new technique that simplifies this process into a single step using…

Read More

This AI Document from KAIST AI Introduces ORPO: Taking Preference Alignment in Language Models to Unprecedented Levels.

KAIST AI's introduction of the Odds Ratio Preference Optimization (ORPO) represents a novel approach in the field of pre-trained language models (PLMs), one that may revolutionize model alignment and set a new standard for ethical artificial intelligence (AI). In contrast to traditional methods, which heavily rely on supervised fine-tuning (SFT) and reinforcement learning with human…

Read More

Apple’s researchers propose ReDrafter: a new technique to enhance the efficiency of large language models using speculative decoding and recurrent neural networks.

The emergence of large language models (LLMs) is making significant advancements in machine learning, offering the ability to mimic human language which is critical for many modern technologies from content creation to digital assistants. A major obstacle to progress, however, has been the processing speed when generating textual responses. This is largely due to the…

Read More