Artificial intelligence possesses large language models (LLMs) like GPT-4 that enable autonomous agents to carry out complex tasks within various environments with unprecedented accuracy. However, these agents still struggle to learn from failures, which is where the Exploration-based Trajectory Optimization (ETO) method comes in. This training introduced by the Allen Institute for AI; Peking University's…
Despite remarkable advances in large language models (LLMs) like ChatGPT, Llama2, Vicuna, and Gemini, these platforms often struggle with safety issues. These problems often manifest as the generation of harmful, incorrect, or biased content by these models. The focus of this paper is on a new safety-conscious decoding method, SafeDecoding, that seeks to shield LLMs…
The field of large language models (LLMs) has witnessed significant advances thanks to the introduction of State Space Models (SSMs). Offering a lower computational footprint, SSMs are seen as a welcome alternative. The recent development of DenseSSM represents a significant milestone in this regard. Designed by a team of researchers at Huawei's Noah's Ark Lab,…
The rapid development in Large Language Models (LLMs) has seen billion- or trillion-parameter models achieve impressive performance across multiple fields. However, their sheer scale poses real issues for deployment due to severe hardware requirements. The focus of current research has been on scaling models to improve performance, following established scaling laws. This, however, emphasizes the…
Large Language Models (LLMs) such as GPT-4 and Llama-2, while highly capable, require fine-tuning with specific data tailored to various business requirements. This process can expose the models to safety threats, most notably the Fine-tuning based Jailbreak Attack (FJAttack). The introduction of even a small number of harmful examples during the fine-tuning phase can drastically…
The application of machine learning, particularly generative models, has lately become more prominent due to the advent of diffusion models (DMs). These models have proved instrumental in modeling complex data distributions and generating realistic samples in numerous areas, including image, video, audio, and 3D scenes. Despite their practical benefits, there are gaps in the full…
The challenges associated with training large language models (LLMs) given their memory-intensive nature can be significant. Traditional methods for reducing memory consumption frequently involve compressing model weights, commonly leading to a decrease in model performance. A new approach being called Gradient Low-Rank Projection (GaLore) is now being proposed by researchers from various institutions, including the…
Computational linguistics, a field that seeks ways to generate human-like text, has experienced tremendous evolution thanks to innovative models. Key among the recent developments are diffusion models, which have made a lot of headway in visual and auditory fields but are now also proving influential in natural language generation (NLG). Through diffusion models, researchers hope…
Large Language Models (LLMs) play a crucial role in the rapidly advancing field of artificial intelligence, particularly in natural language processing. The quality, diversity, and scope of LLMs are directly linked to their training datasets. As the complexity of human language and the demands on LLMs to mirror this complexity increase, researchers are developing new…
The field of educational technology continues to evolve, yielding enhancements in teaching methods and learning experiences. Mathematics, in particular, tends to be challenging, requiring tailored solutions to cater to the diverse needs of students. The focus currently lies in developing effective and scalable tools for teaching and assessing mathematical problem-solving skills across a wide spectrum…
The intersection of machine learning and genomics has led to breakthroughs in the domain of biotechnology, particularly in the area of DNA sequence modeling. This cross-disciplinary approach tackles the complex challenges posed by genomic data, such as understanding long-range interactions within the genome, the bidirectional influence of genomic regions, and the phenomenon of reverse complementarity…
On March 10, 2024, OpenAI, a leading organization in artificial intelligence research, underwent a significant change to its board of directors. The company announced the return of its CEO, Sam Altman, to the board, after a brief departure, as well as additions of three new members: Dr. Sue Desmond-Hellmann, former CEO of the Bill and…