Skip to content Skip to sidebar Skip to footer

Computer modeling

To enhance your AI assistant, begin by simulating the unpredictable conduct of people.

Researchers at MIT and the University of Washington have developed a new way to model human behaviour by accounting for unknown computational constraints that may impact problem-solving abilities. This new model enables an agent, human or machine, to infer another agent's computational constraints from their previous actions. The resulting 'inference budget' can be used to…

Read More

To construct an improved AI assistant, initiate by emulating the unpredictable actions of humans.

Researchers at MIT and the University of Washington have developed a computational model that can predict an intelligent agent's behaviors based on its "inference budget" (i.e. the limits on its computational resources). This was accomplished by using an algorithm that recorded all the decisions made by the agent within a given period of time. They…

Read More

To improve the creation of AI assistants, begin by imitating the unpredictable actions of humans.

Researchers at MIT and the University of Washington have devised a model to predict the behaviour of AI systems and humans. The model factors in the indefinite computational constraints which may hinder an agent's problem-solving skills. By analysing only a few instances of previous actions, the model can predict an agent's future behaviour. The findings…

Read More

To enhance the development of more effective AI assistants, consider simulating the unpredictable actions of humans as a starting point.

To build an Artificial Intelligence (AI) system that can work effectively with humans, it's critical to have an accurate model of human behavior. However, humans often act less optimally when making decisions, and these irrational behaviors are challenging to imitate. This is due to computational constraints - a person cannot dedicate decades to finding an…

Read More

To improve an AI assistant, initiate by simulating the unpredictable conduct of humans.

Researchers from MIT and the University of Washington have developed a computational model to predict human behavior while taking into account the suboptimal decisions humans often make due to computational constraints. The researchers believe such a model could help AI systems anticipate and counterbalance human-derived errors, enhancing the efficacy of AI-human collaboration. Suboptimal decision-making is characteristic…

Read More

To create an improved AI assistant, begin by simulating the unpredictable actions of people.

Researchers at MIT and the University of Washington have successfully developed a model that can infer an agent's computational constraints from observing a few samples of their past actions. The findings could potentially enhance the ability of AI systems to collaborate more effectively with humans. The scientists found that human decision-making often deviates from optimal,…

Read More

For improving an AI assistant, begin with simulating the unpredictable tendencies of human beings.

MIT and University of Washington researchers have created a method to model both human and machine behaviours, taking into account unknown computational constraints which can limited problem-solving skills. The model infers an "inference budget" from previous actions. The inference budget can then predict the agent's future behaviour. Their technique can be used to predict navigation…

Read More

To construct an advanced AI assistant, initiate the process by imitating the erratic actions of humans.

Researchers at MIT and the University of Washington have developed a model that accounts for the sub-optimal decision-making processes in humans, potentially improving the way artificial intelligence can predict human behavior. Named 'inference budget,' the model infers an agent's computational constraints, whether human or machine, after observing a few traces of their past actions. It…

Read More

In order to improve an AI assistant, initiate by imitating the unpredictable actions of humans.

Researchers from MIT and the University of Washington have developed a method to model the behaviour of an agent, including its computational limitations, predicting future behaviours by examining prior actions. The method applies to both humans and AI, and has a wide range of potential applications, including predicting navigation goals from past routes and forecasting…

Read More

To develop a superior AI assistant, begin by simulating the unpredictable actions of humans.

In an effort to improve AI systems and their ability to collaborate with humans, scientists are trying to better understand human decision-making, including its suboptimal aspects, and model it in AI. A model for human or AI agent behaviour, developed by researchers at MIT and the University of Washington, takes into account an agent’s unknown…

Read More

Machine learning divulges the mysteries of high-tech alloys.

Researchers from the Massachusetts Institute of Technology (MIT) are using machine learning to explore the concept of short-range order (SRO) in metallic alloys at atomic levels. The team believes that understanding SRO is key to creating high-performance alloys with unique properties but this has been a challenging area to explore. High-entropy alloys are of particular…

Read More

Machine learning reveals the mysteries behind sophisticated alloys.

The Short-Range Order (SRO), the arrangement of atoms over small distances, plays a crucial role in materials’ properties, yet it has been understudied in metallic alloys. However, recent attention has been drawn to this concept as it is a contributing step towards developing high-performing alloys known as high-entropy alloys. Understanding how atoms self-arrange can pose…

Read More