Researchers at MIT have developed a new method that allows animators to have more control over their creations. Using mathematical functions called barycentric coordinates, they can now better control how 2D and 3D shapes stretch, move, and bend. Unlike traditional methods that only offered limited options for animation, this new method provides animators a level…
A new technique introduced by MIT researchers promises artists greater control over the animations of heroes and villains in animated movies and video games. The method generates barycentric coordinates - mathematical functions that define how 2D and 3D shapes can move, bend, and stretch in space. This allows an artist to shape the motion of…
Photolithography is a crucial process in the manufacturing of computer chips and other optical devices, but validity between the design and the final product often falls short due to tiny variations in the manufacturing process. To address this issue, researchers from MIT and the Chinese University of Hong Kong have developed a machine-learning aided digital…
Researchers at MIT have developed a technique that could allow animators to have greater control over their characters. The method uses mathematical functions known as barycentric coordinates, which define how 2D and 3D shapes can bend, stretch, and move through space. This technique could provide artists with more flexibility in their animations, unlike previous techniques…
Photolithography, a process used to fabricate computer chips and optical devices, often falls short of designers' intentions due to tiny deviations during manufacturing. To address this, researchers from MIT and the Chinese University of Hong Kong have used machine learning to develop a digital simulator that precisely replicates a specific photolithography manufacturing process. The simulator…
An innovative technique introduced by MIT researchers could offer greater control to artists who create animations for films and video games. The researchers' method revolves around generating mathematical functions known as barycentric coordinates. These coordinates determine how 2D and 3D shapes can stretch, bend and move in space.
This new technique is distinctive in its…
Photolithography, a process used to create computer chips and optical devices, can often have tiny deviations during production, causing the final product to fall short of the initial design. To address this, researchers from MIT and the Chinese University of Hong Kong have used machine learning to develop a digital simulator that more accurately models…
A new technique introduced by researchers from the Massachusetts Institute of Technology (MIT) could provide artists with enhanced control over their animated creations. This method uses mathematical functions known as barycentric coordinates, which define how 2D and 3D shapes can bend, stretch, and move through space. The procedure offers multiple options for barycentric coordinate functions,…
More than 2,000 years after Greek mathematician Euclid laid the groundwork for geometry, Justin Solomon, an associate professor at the MIT Department of Electrical Engineering and Computer Science, is leveraging modern geometric techniques to solve complex problems that seemingly have no connection to shapes. Solomon's work involves using geometrical structures in comparing datasets to predict…
Researchers from MIT and the Chinese University of Hong Kong have developed a machine learning technique to bridge the gap between the design and manufacturing processes in photolithography. Photolithography, a technique commonly used in fabricating computer chips and optical devices like lenses, often falls short of the designers' expectations due to minute deviations during manufacturing.…