Skip to content Skip to sidebar Skip to footer

Computer science and technology

An adaptable approach to assist artists in enhancing animation.

Researchers at MIT have developed a new method that allows animators to have more control over their creations. Using mathematical functions called barycentric coordinates, they can now better control how 2D and 3D shapes stretch, move, and bend. Unlike traditional methods that only offered limited options for animation, this new method provides animators a level…

Read More

An adaptable approach that assists artists in enhancing animation.

A new technique introduced by MIT researchers promises artists greater control over the animations of heroes and villains in animated movies and video games. The method generates barycentric coordinates - mathematical functions that define how 2D and 3D shapes can move, bend, and stretch in space. This allows an artist to shape the motion of…

Read More

Bridging the divide between design and production for optical instruments

Photolithography is a crucial process in the manufacturing of computer chips and other optical devices, but validity between the design and the final product often falls short due to tiny variations in the manufacturing process. To address this issue, researchers from MIT and the Chinese University of Hong Kong have developed a machine-learning aided digital…

Read More

A versatile approach designed to assist illustrators in enhancing their animation.

Researchers at MIT have developed a technique that could allow animators to have greater control over their characters. The method uses mathematical functions known as barycentric coordinates, which define how 2D and 3D shapes can bend, stretch, and move through space. This technique could provide artists with more flexibility in their animations, unlike previous techniques…

Read More

Bridging the gap between design and production for optical instruments.

Photolithography, a process used to fabricate computer chips and optical devices, often falls short of designers' intentions due to tiny deviations during manufacturing. To address this, researchers from MIT and the Chinese University of Hong Kong have used machine learning to develop a digital simulator that precisely replicates a specific photolithography manufacturing process. The simulator…

Read More

A versatile approach for assisting artists in enhancing animation.

An innovative technique introduced by MIT researchers could offer greater control to artists who create animations for films and video games. The researchers' method revolves around generating mathematical functions known as barycentric coordinates. These coordinates determine how 2D and 3D shapes can stretch, bend and move in space. This new technique is distinctive in its…

Read More

Bridging the gap between designing and manufacturing in the field of optical devices.

Photolithography, a process used to create computer chips and optical devices, can often have tiny deviations during production, causing the final product to fall short of the initial design. To address this, researchers from MIT and the Chinese University of Hong Kong have used machine learning to develop a digital simulator that more accurately models…

Read More

A dynamic approach to assist animators in enhancing their artistry.

A new technique introduced by researchers from the Massachusetts Institute of Technology (MIT) could provide artists with enhanced control over their animated creations. This method uses mathematical functions known as barycentric coordinates, which define how 2D and 3D shapes can bend, stretch, and move through space. The procedure offers multiple options for barycentric coordinate functions,…

Read More

A computer science expert explores new limits of geometry.

More than 2,000 years after Greek mathematician Euclid laid the groundwork for geometry, Justin Solomon, an associate professor at the MIT Department of Electrical Engineering and Computer Science, is leveraging modern geometric techniques to solve complex problems that seemingly have no connection to shapes. Solomon's work involves using geometrical structures in comparing datasets to predict…

Read More

Bridging the gap between design and production for optical instruments.

Researchers from MIT and the Chinese University of Hong Kong have developed a machine learning technique to bridge the gap between the design and manufacturing processes in photolithography. Photolithography, a technique commonly used in fabricating computer chips and optical devices like lenses, often falls short of the designers' expectations due to minute deviations during manufacturing.…

Read More