Researchers at MIT and the University of Washington have developed a model that accounts for the sub-optimal decision-making processes in humans, potentially improving the way artificial intelligence can predict human behavior.
Named 'inference budget,' the model infers an agent's computational constraints, whether human or machine, after observing a few traces of their past actions. It…
Researchers from MIT and the University of Washington have developed a method to model the behaviour of an agent, including its computational limitations, predicting future behaviours by examining prior actions. The method applies to both humans and AI, and has a wide range of potential applications, including predicting navigation goals from past routes and forecasting…
Health-monitoring apps that assist people in managing chronic diseases or tracking fitness goals work with the help of large machine-learning models, which are often shuttled between a user's smartphone and a central memory server. This process can slow down the app's performance and drain the energy of the device. While machine-learning accelerators can help to…
In an effort to improve AI systems and their ability to collaborate with humans, scientists are trying to better understand human decision-making, including its suboptimal aspects, and model it in AI. A model for human or AI agent behaviour, developed by researchers at MIT and the University of Washington, takes into account an agent’s unknown…
Researchers at the Massachusetts Institute of Technology (MIT) and the MIT-IBM Watson AI Lab have developed a machine learning accelerator chip that is resistant to the most common types of cyberattacks, ensuring data privacy while supporting efficient AI model operations on devices. The chip can be used in demanding AI applications like augmented and virtual…
Machine learning (ML) models are increasingly used by organizations to allocate scarce resources or opportunities, such as for job screening or determining priority for kidney transplant patients. To avoid bias in a model's predictions, users may adjust the data features or calibrate the model's scores to ensure fairness. However, researchers at MIT and Northeastern University…
As AI models become increasingly integrated into various sectors, understanding how they function is crucial. By interpreting the mechanisms underlying these models, we can audit them for safety and biases, potentially deepening our understanding of intelligence. Researchers from MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL) have been working to automate this interpretation process, specifically…
Large language models (LLMs), such as GPT-3, are powerful tools due to their versatility. They can perform a wide range of tasks, ranging from helping draft emails to assisting in cancer diagnosis. However, their wide applicability makes them challenging to evaluate systematically, as it would be impossible to create a benchmark dataset to test a…
Artificial intelligence (AI) tools have great potential in the field of biomedicine, particularly in the process of segmentation or annotating the pixels of an important structure in a medical image. Segmentation is critical for the identification of possible diseases or anomalies in body organs or cells. However, the challenge lies in the variability of the…
Ductal carcinoma in situ (DCIS), a type of tumor that can develop into an aggressive form of breast cancer, accounts for approximately 25% of all breast cancer diagnoses. DCIS can be challenging for clinicians to accurately categorize, leading to frequent overtreatment for patients. A team of researchers from the Massachusetts Institute of Technology (MIT) and…