Algorithms, Artificial Intelligence, Arts, Augmented and virtual reality, Computer Science and Artificial Intelligence Laboratory (CSAIL), Computer science and technology, Computer vision, Electrical Engineering & Computer Science (eecs), Mathematics, MIT Schwarzman College of Computing, MIT-IBM Watson AI Lab, National Science Foundation (NSF), Research, UncategorizedApril 17, 2024212Views0Likes0Comments
An innovative technique introduced by MIT researchers could offer greater control to artists who create animations for films and video games. The researchers' method revolves around generating mathematical functions known as barycentric coordinates. These coordinates determine how 2D and 3D shapes can stretch, bend and move in space.
This new technique is distinctive in its…
Artificial Intelligence's powerful autoregressive (AR) large language models (LLMs), like the GPT series, have made significant progress in achieving general artificial intelligence (AGI). These models use self-supervised learning to predict the next token in a sequence, allowing them to adapt to a diverse range of unseen tasks through zero-shot and few-shot learning. This adaptability makes…
A new technique introduced by researchers from the Massachusetts Institute of Technology (MIT) could provide artists with enhanced control over their animated creations. This method uses mathematical functions known as barycentric coordinates, which define how 2D and 3D shapes can bend, stretch, and move through space. The procedure offers multiple options for barycentric coordinate functions,…
More than 2,000 years after Greek mathematician Euclid laid the groundwork for geometry, Justin Solomon, an associate professor at the MIT Department of Electrical Engineering and Computer Science, is leveraging modern geometric techniques to solve complex problems that seemingly have no connection to shapes. Solomon's work involves using geometrical structures in comparing datasets to predict…
MIT researchers have developed a technique that might allow animators to have more control over their creations. It leverages mathematical functions known as barycentric coordinates to define the way 2D and 3D shapes bend, stretch and move. It gives artists significant flexibility, allowing them to select functions that best fit their vision for the animation.…
Justin Solomon, an associate professor at the Massachusetts Institute of Technology (MIT), is applying modern geometric techniques to solve complex problems in data science, computer graphics, and artificial intelligence. He draws upon the principles of geometry— the study of shapes—pioneered over 2,000 years ago by Greek mathematician Euclid.
The relevance of geometric principles extends beyond…
Researchers from MIT have developed a method that could provide animators with greater control over their animations. This new technique generates mathematical functions known as barycentric coordinates, which define how 2D and 3D shapes can bend, stretch, and move through space. This allows the artist to determine the movements of animated objects according to their…
Justin Solomon, an Associate Professor in the MIT Department of Electrical Engineering and Computer Science (EECS), is using geometric techniques to solve complex computing problems. Solomon says this method is ideally suited to finding solutions in data science, as it can enable a deeper understanding of the distances, similarities, curvature and shape data.
About half…
Researchers at Massachusetts Institute of Technology (MIT) have introduced a new technique for animating characters in movies and video games which allows artists greater flexibility and control. The method works by generating mathematical functions called barycentric coordinates to define how 2D and 3D shapes can move, stretch, and bend within space.
Animation techniques currently available can…
Advancements in multimodal architectures are transforming how systems process and interpret complex data. These technologies enable concurrent analyses of different data types such as text and images, enhancing AI capabilities to resemble human cognitive functions more precisely. Despite the progress, there are still difficulties in efficiently and effectively merging textual and visual information within AI…
