MIT researchers have developed a computational model that helps predict mutations leading to better proteins, based on a relatively small dataset. In the current process of creating proteins with useful functions, scientists usually start with a natural protein and put it through numerous rounds of random mutation to generate an optimized version.
This process has led…
In a search to create more effective proteins for various purposes, including research and medical applications, researchers at MIT have developed a new computational approach aimed at predicting beneficial mutations based on limited data. Modeling this technique, they produced modified versions of green fluorescent protein (GFP), a protein found in certain jellyfish, and explored its…
Scientists at the Massachusetts Institute of Technology (MIT) have developed a computational tool that can predict mutations to help create better proteins. The tool facilitates the creation of improved versions of proteins through strategic mutations and could offer significant advancements in neuroscience research and medical applications. One common procedure for producing improved proteins involves introducing…
Researchers at MIT have developed a computational method to hasten the process of generating optimized versions of proteins, using only a small amount of data. The researchers have generated proteins with mutations capable of improving Green Fluorescent Protein (GFP) and a protein used to deliver DNA for gene therapy from an adeno-associated virus (AAV).
The process…
Protein engineering is a complicated process, typically involving the random mutation of a natural protein with a desirable function, repeated until an optimal version of the protein is developed. This process has proven successful for proteins like the green fluorescent protein (GFP), but this isn't the case for all proteins. Researchers at MIT have developed…
MIT researchers have developed a computational approach to help predict mutations that can create optimized versions of certain proteins, working with a relatively small amount of data. The team believes the system could lead to potential medical applications and neuroscience research tools.
Usually, protein engineering begins with a natural protein that already has a desirable function,…
MIT researchers have developed a computational approach that predicts protein mutations, based on limited data, that would enhance their performance. The researchers used their model to create optimized versions of proteins derived from two naturally occurring structures. One of these was the green fluorescent protein (GFP), a molecule used to track cellular processes within the…
Scientists at Massachusetts Institute of Technology (MIT) have developed a computational model aimed at simplifying the process of protein engineering. The researchers applied mutations to natural proteins with desirable traits, such as the ability to emit fluorescent light, using random mutation to cultivate better versions of the protein. The technique was deployed using the green…
Scientists from the McGovern Institute for Brain Research at MIT, the Broad Institute of MIT and Harvard, and the National Center for Biotechnology Information at the National Institutes of Health, have developed a new search algorithm to find enzymes of interest in vast microbial sequence databases. This algorithm, called Fast Locality-Sensitive Hashing-based clustering (FLSHclust), discovered…
Researchers at MIT, Harvard, and the National Institutes of Health have utilized a new search algorithm to identify 188 different types of rare CRISPR systems in bacterial genomes. This data holds potential to advance genome-editing technology, enabling more precise treatments and diagnostics.
The algorithm, developed in the lab of prominent CRISPR researcher, Professor Feng Zhang uses…