The rapid growth of artificial intelligence (AI) technology has led numerous countries and international organizations to develop frameworks that guide the development, application, and governance of AI. These AI governance laws address the challenges AI poses and aim to direct the ethical use of AI in a way that supports human rights and fosters innovation.
One…
Natural language processing (NLP) is a technology that helps computers interpret and generate human language. Advances in this area have greatly benefited fields like machine translation, chatbots, and automated text analysis. However, despite these advancements, there are still major challenges. For example, it is often difficult for these models to maintain context over extended conversations,…
Natural Language Processing (NLP) is a field which allows computers to understand and generate human language effectively. With the evolution of AI, a wide range of applications like machine translation, chatbots, and automated text analysis have been greatly impacted. However, despite various advancements, a common challenge these systems face is their inability to maintain the…
Multimodal language models are a novel area in artificial intelligence (AI) concerned with enhancing machine comprehension of both text and visuals. These models integrate visual and text data in order to understand, interpret, and reason complex information more effectively, pushing AI towards a more sophisticated level of interaction with the real world. However, such sophisticated…
Google's Graph Mining team has developed a new processing algorithm, TeraHAC, capable of clustering extremely large data sets with hundreds of billions, or even trillions, of data points. This process is commonly used in activities such as prediction and information retrieval and involves the categorization of similar items into groups to better comprehend the relationships…
Google's Graph Mining team has unveiled TeraHAC, a clustering algorithm designed to process massive datasets with hundreds of billions of data points, which are often utilized in prediction tasks and information retrieval. The challenge in dealing with such massive datasets is the prohibitive computational cost and limitations in parallel processing. Traditional clustering algorithms have struggled…
The latest advancements in econometric modeling and hypothesis testing have signified a vital shift towards the incorporation of machine learning technologies. Even though progress has been made in estimating econometric models of human behaviour, there is still much research to be undertaken to enhance the efficiency in generating these models and their rigorous examination.
Academics from…
PyTorch recently launched the alpha version of its state-of-the-art solution, ExecuTorch, enabling the deployment of intricate machine learning models on resource-limited edge devices such as smartphones and wearables. Poor computational power and limited resources have traditionally hindered deploying such models on edge devices. PyTorch's ExecuTorch Alpha aims to bridge this gap, optimizing model execution on…
Advanced language models (LLMs) have significantly improved natural language understanding and are broadly applied in multiple areas. However, they can be sensitive to specific input prompts, prompting research into understanding this characteristic. Through exploring this behavior, prompts for learning tasks like zero-shot and in-context training are created. One such application, AutoPrompt, recognizes task-specific tokens to…