Researchers from MIT have developed a technique that provides animation artists greater flexibility and control over their characters. Their approach generates mathematical functions known as barycentric coordinates which define how 2D and 3D shapes can bend, stretch, and move. This change allows artists to choose functions that best suit their vision for their characters, offering…
MIT researchers have introduced a new technique giving animation artists more control over their 2D and 3D characters. The method uses mathematical functions, known as barycentric coordinates, which determine how shapes can move, bend, and stretch in space. This allows artists to shape the movements of an animated character according to their vision.
Traditionally, artists have…
A novel technique unveiled by researchers at MIT could provide artists more flexibility while animating characters in movies and video games. The approach involves producing mathematical functions called barycentric coordinates to determine how 2D and 3D shapes can bend, stretch, and manoeuvre through space. Artists are thus provided with multiple options of barycentric coordinate functions…
A new technique developed by MIT researchers aims to give artists more control over their animations. The approach, which generates barycentric coordinates, allows artists to define how 2D and 3D shapes can bend, stretch, and move in space and creates an artifact that fits their vision better. This is a departure from available techniques which…
Media artists who work on animated movies and video games could have more control over their animations, thanks to a new technique developed by researchers at MIT (Massachusetts Institute of Technology). This novel approach uses mathematical functions called barycentric coordinates to define how 2D and 3D shapes can move and change shape.
Currently, many techniques for…
A ground-breaking method to give animators more control over their work has been introduced by researchers at the Massachusetts Institute of Technology, represented in a paper by Ana Dodik, the lead author. The technique relies on generating mathematical functions known as 'barycentric coordinates,' which guide how 2D and 3D shapes bend, stretch, and move throughout…
For almost ten years, researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) have conducted studies to understand why some images are more memorable than others. The team used magnetoencephalography (MEG), which records timing of brain activity, and functional magnetic resonance imaging (fMRI), which identifies active brain regions, to discern when and where in…
Researchers from MIT and the MIT-IBM Watson AI Lab have developed a machine-learning accelerator that is resistant to the two most common types of cyber attacks. This development is a major leap forward in data and information security within devices using machine-learning applications. The chip can protect sensitive user information such as health records and…
Researchers at MIT have developed a technique to give animators greater control over the movements of their 2D and 3D characters. Their method generates barycentric coordinates, mathematical functions that dictate how shapes bend, stretch, and move through space. Unlike other methods, this approach offers flexibility by allowing animators to choose suitable functions for achieving desired…