Skip to content Skip to sidebar Skip to footer

Electrical Engineering & Computer Science (eecs)

An adaptable approach to assist animators in enhancing their artistry.

Researchers at MIT have introduced a new technique for artists that could revolutionise the way animated characters are brought to life in movies and games. The technique is based on barycentric coordinates, a mathematical function that defines how 2D and 3D shapes can move and bend. This is a significant advance on existing techniques which…

Read More

An adaptable approach to assist artists in enhancing animation.

MIT researchers have developed a new method to improve the control animators have over their animated characters. The technique involves the use of a mathematical function called Barycentric coordinates, that defines how both 2D and 3D elements can be manipulated in space. Unlike other techniques, this allows for more flexibility and leeway for creatives. An important…

Read More

A versatile approach to assist animators in enhancing their craft.

Researchers at MIT have developed a technique which provides an updated approach to creating animations and could deliver more control to artists. The technique uses mathematical functions known as barycentric coordinates, which dictate how 2D and 3D shapes interact with space, introducing possibilities for curvature and movement. Current techniques tend to offer limited flexibility, generally…

Read More

A versatile approach to assist animators in enhancing their animation work.

A team of researchers from MIT has introduced a new technique that allows artists of animated movies and video games to have greater control over the movement of their animations. Their method is rooted in mathematical functions called barycentric coordinates, which define how 2D and 3D shapes move, bend and stretch. This level of dynamic…

Read More

Start developing a more efficient AI assistant by first understanding and replicating the unpredictable actions of humans.

Artificial Intelligence (AI) researchers at MIT and the University of Washington have created a model that can predict a human's decision-making behaviour by learning from their past actions. The model incorporates the understanding that humans can behave sub-optimally due to computational constraints — essentially the idea that humans can't spend indefinitely long periods considering the…

Read More

A versatile approach to assist animators in enhancing their artistry.

Researchers from MIT have developed a new technique that could offer artists greater control over animations. This new method utilizes barycentric coordinates, mathematical functions that dictate how 2D and 3D shapes can bend, stretch and move. Significantly, this technique gives animators the flexibility to define their preferred 'smoothness energies' that best suits their artistic vision. Presently,…

Read More

An adaptable approach to assist artists in enhancing animation.

Researchers at MIT have developed a new method that allows animators to have more control over their creations. Using mathematical functions called barycentric coordinates, they can now better control how 2D and 3D shapes stretch, move, and bend. Unlike traditional methods that only offered limited options for animation, this new method provides animators a level…

Read More

An adaptable approach that assists artists in enhancing animation.

A new technique introduced by MIT researchers promises artists greater control over the animations of heroes and villains in animated movies and video games. The method generates barycentric coordinates - mathematical functions that define how 2D and 3D shapes can move, bend, and stretch in space. This allows an artist to shape the motion of…

Read More