More than 2000 years after Greek mathematician Euclid revolutionized the understanding of shapes, MIT associate professor Justin Solomon uses modern geometric techniques to resolve complex problems that seemingly have little to do with shapes. Adopting these techniques to compare two datasets for machine learning model performance, Solomon argues that geometric tools can reveal whether the…
MIT researchers have developed a technique that could revolutionize the animation industry by giving artists more flexibility in how they animate characters. Instead of sticking to a single conventional measurements or mathematical functions called barycentric coordinates, the new method allows the artist to experiment with different movements and expressions, specific to each individual animation. This…
Over two thousand years ago, Greek mathematician Euclid revolutionized the world with his groundbreaking work in geometry. Today, MIT Associate Professor Justin Solomon is using contemporary geometric techniques to solve intricate problems, which often don't appear to be related to shapes, albeit heavily correlate with data arrangement in a high-dimensional space.
Solomon, who is also a…
A new technique developed by researchers at MIT gives animators more control over their creations by generating mathematical functions that determine how 2D and 3D shapes can bend, stretch and move through space. These functions, called barycentric coordinates, provide enhanced flexibility as opposed to traditional methods that restrict artists to a single option for shape-motion…
Justin Solomon, an associate professor in the MIT Department of Electrical Engineering and Computer Science and a member of the Computer Science and Artificial Intelligence Laboratory (CSAIL), employs modern geometric techniques to solve intricate problems often unrelated to shapes. Using these geometric methods, data sets can be compared and the high-dimensional space in which the…
The Greek mathematician Euclid is renowned for laying the groundwork of geometry more than 2,000 years ago. In present times, Justin Solomon, an Associate Professor at MIT's Department of Electrical Engineering and Computer Science, is deriving inspiration from Euclid's fundamental theories and using modern geometric techniques to solve complex problems. Remarkably, these issues frequently bear…
A new technique developed by researchers from MIT promises to revolutionize how artists animate characters in video games and animated films. Utilizing mathematical functions called barycentric coordinates, which define how 2D and 3D shapes can move, bend, and stretch in space, will give animators greater control over the motion of characters.
Traditional animating methods often provide…
Justin Solomon, an associate professor at the Massachusetts Institute of Technology (MIT) Department of Electrical Engineering and Computer Science, is applying modern geometric techniques to solve complex problems in machine learning, data science, and computer graphics. He leads the Geometric Data Processing Group, half of which works on optimizing two- and three-dimensional geometric data in…
A group of MIT researchers have developed a technique that will allow artists better control over their 3D animations. The method uses mathematical functions known as barycentric coordinates, allowing 3D shapes to be manipulated. This offers more flexibility than traditional animation methods, which require starting from scratch for every change in animation. The developed method…
Justin Solomon, based at MIT's Department of Electrical Engineering and Computer Science and a member of the Computer Science and Artificial Intelligence Laboratory, is using modern geometric techniques to solve a wide range of mathematical and AI problems. Drawing on the principles of ancient geometry, Solomon's work has applications from autonomous vehicles identifying pedestrians using…