Skip to content Skip to sidebar Skip to footer

Electronics

Bridging the gap between the design and manufacturing of optical devices.

Photolithography is a manufacturing process that uses light to precisely etch features onto surfaces, such as producing computer chips and optical devices. However, small imprecisions in the process can sometimes result in devices not being produced to specifications. To close this gap, researchers from MIT and the Chinese University of Hong Kong are employing machine…

Read More

Bridging the gap between the design and production stages for optical devices.

Researchers from MIT and the Chinese University of Hong Kong have leveraged machine learning to construct a digital simulator to enhance the precision of photolithography and bridge the gap between design and manufacturing. Photolithography, a crucial manufacturing process in computer chip production and optical device fabrication, suffers from slight deviations that can lead to shortcomings…

Read More

Narrowing the distance between design and production for optical instruments.

Photolithography, a technique used to etch precise features onto surfaces for the creation of computer chips and optical devices, is often inaccurately executed due to tiny deviations during manufacturing. In an attempt to bridge this gap between design and production, a team of researchers from MIT and the Chinese University of Hong Kong have developed…

Read More

Bridging the gap between design and production for optical equipment.

Researchers from MIT and the Chinese University of Hong Kong are using machine learning to close the gap between design and manufacturing processes in photolithography - a method used in the creation of computer chips and optical devices. Photolithography involves using light to etch features onto a surface. However, tiny variations during production often lead…

Read More

Bridging the gap between design and production in the field of optical devices.

Photolithography, the process of manipulating light to etch features on to a surface, is crucial in making computer chips and optical devices. However, the performance of devices made using this process often falls short of their original designs due to minute deviations during manufacturing. To address this design-to-manufacturing gap, researchers from MIT and the Chinese…

Read More

Bridging the gap between design and production for optical instruments.

Photolithography, a process of etching detailed patterns onto surfaces using light, is a crucial technique in the design and production of computer chips and other optical devices, such as lenses. However, minute deviations during manufacturing can cause a discrepancy between the designer's intentions and the actual produced device. To help bridge this gap between design…

Read More

Bridging the gap between design and production for optical equipment.

Researchers at MIT and the Chinese University of Hong Kong have developed a machine learning model to close the gap between design and manufacturing in the field of photolithography. The technique, which involves manipulating light to etch onto surfaces, sees use in the creation of computer chips and optical devices but often falls short of…

Read More

Bridging the gap between design and production for optical devices

Researchers from Massachusetts Institute of Technology (MIT) and the Chinese University of Hong Kong have developed a digital simulator that mimics the photolithography process, a technique used to manufacture computer chips and optical devices. The project marks the first use of actual data from a photolithography system in the construction of a simulator. This advancement could…

Read More

Bridging the gap between design and production in the field of optical instruments.

Researchers from MIT and the Chinese University of Hong Kong have developed a machine learning-powered digital simulator that can accurately replicate a particular photolithography manufacturing process. Photolithography is a technique used to intricately etch features onto surfaces, often used in the creation of computer chips and optical devices. Despite its precision, tiny deviations in the…

Read More

Bridging the gap between design and manufacturing in the field of optical devices.

Researchers at MIT and the Chinese University of Hong Kong have developed a machine learning-powered digital simulator for the photolithography process, frequently used in the manufacture of computer chips and optical devices. The team has built a digital simulator that can model the photolithography system based on real-world data, allowing for a greater level of…

Read More

Narrowing the disconnect between design and production in the field of optical devices.

Photolithography is an important process in the manufacture of computer chips and optical devices like lenses, using light to carve precise features onto a surface. However, minor deviations during the manufacturing process can lead to these devices underperforming when compared to the original designs. To address this issue, researchers from MIT and the Chinese University…

Read More