In the field of machine learning and artificial language modeling, Large Language Models (LLMs) are often used to analyze or interpret large chunks of data. Such models have the capability to support very long context windows; however, this approach is not without its challenges. Standard attention mechanisms, used to allocate computational resources, often suffer from…
Large language models (LLMs) like GPT-4 have demonstrated impressive performance in various tasks, ranging from summarizing news articles to writing code. However, concerns propagated by two crucial issues: hallucination and performance disparities. Hallucination describes the tendency of LLMs to generate plausible yet inaccurate text, posing a risk in tasks that require accurate factual recall. Performance…
InternLM has introduced its newest development in open large language models, InternLM2.5-7B-Chat, which is available in GGUF format. This latest model is compatible with the open-source framework, llama.cpp which is used for LLM inference and can be utilized both locally and in the cloud on different hardware platforms. The GGUF format provides half-precision and low-bit…
Researchers from the Georgia Institute of Technology and the University of California, San Diego, have introduced an innovative model-based reinforcement learning algorithm called Policy learning with Large World Models (PWM). Traditional reinforcement learning methods have faced difficulties with multitasking, especially across different robotic forms. PWM tackles these issues by pretraining world models on offline data,…
Artificial Intelligence (AI) has revolutionized numerous industries, from customer service to content generation, by deploying large language models (LLMs) that can supply accurate and useful replies to human prompts. However, these models tend to favor longer responses, exhibiting an inherent length bias that complicates model evaluation.
To balance response length with quality, researchers have developed Length-Instruction…
Businesses worldwide are capitalizing on the transformative capabilities of Artificial Intelligence (AI) to improve their processes. A standout AI-powered tool is OpenAI's ChatGPT, a language model that can generate texts mimicking human conversation. While beneficial, out-of-the-box applications of ChatGPT sometimes fail to fully meet a business's specific requirements. To maximize its potential, businesses must perform…
Large Language Models (LLMs) have significantly impacted industries from translation to sentiment analysis. However, their practical use is hampered by computational demands, particularly with long prompts due to the quadratic complexity of the attention mechanism. Addressing this issue, researchers from Microsoft Corporation and the University of Surrey have developed MInference, a method to accelerate long-sequence…
Large language models (LLMs) can greatly benefit from better integration of up-to-date information and reducing biases, which are often found in Retrieval-Augmented Generation (RAG) techniques. However, these models face challenges due to their complexity and longer response times. Therefore, optimizing the performance of RAG is key to their effectiveness in real-time applications where accuracy and…
Natural language processing (NLP), a field within artificial intelligence (AI), aims at aiding machines to decipher and establish human language. It includes tasks such as translation, sentiment analysis, and text summarization. The progress in this field has led to the creation of 'Large Language Models’ (LLMs), capable of handling massive quantities of text. This progress…
Natural language processing (NLP), a subfield of Artificial Intelligence (AI), is designed to allow machines to understand and mirror human language. It oversees a variety of tasks like language translation, sentiment analysis, and text summarization. The advent of large language models (LLMs), capable of processing great amounts of data, has significantly advanced these tasks, opening…
Arcee AI, a leading artificial intelligence (AI) company, has launched Arcee Agent, a novel 7 billion parameter language model designed for function calling and tool usage. The model is smaller in size compared to its contemporaries, a difference which does not compromise performance but significantly cuts the computation needs. Developed using the high-performing Qwen2-7B architecture…
Natural language processing has been making significant headway recently, with a special focus on fine-tuning large language models (LLMs) for specified tasks. These models typically comprise billions of parameters, hence customization can be a challenge. The goal is to devise more efficient methods that customize these models to particular downstream tasks without overwhelming computational costs.…