Skip to content Skip to sidebar Skip to footer

Language Model

Improving the Precision and Brevity of Responses in Large Language Models using Restricted Stream-of-Consciousness Prompting.

With advancements in model architectures and training methods, Large Language Models (LLMs) such as OpenAI's GPT-3 have showcased impressive capabilities in handling complex question-answering tasks. However, these complex responses can also lead to hallucinations, where the model generates plausible but incorrect information. This is also compounded by the fact that these LLMs generate responses word-by-word,…

Read More

Google AI presents ShieldGemma: an extensive assembly of LLM-based models for safe content moderation, which is constructed on Gemma2.

Large Language Models (LLMs) have gained significant traction in various applications but they need robust safety measures for responsible user interactions. Current moderation solutions often lack detailed harm type predictions or customizable harm filtering. Now, researchers from Google have introduced ShieldGemma, a suite of content moderation models ranging from 2 billion to 27 billion parameters,…

Read More

Salesforce AI has unveiled ‘ThinK’, a novel AI approach that leverages the significant redundancy throughout the channel dimension in the KV Cache.

Large Language Models (LLMs) have transformed natural language processing, demonstrating impressive performance across an assortment of tasks. The Scaling Law suggests that increased model size enhances LLMs' capability to comprehend context and handle long sequences. Applications such as document summarization, code generation, and conversational AI leverage these properties. However, the increased cost and efficiency associated…

Read More

This AI document by Apple presents the base language models that fuel Apple’s intelligence features: On-Device AFM and Server AFM.

Apple's researchers have risen to the challenge of developing AI language models that prioritize efficiency, accuracy, ethical considerations, and user privacy. Two such models have been developed: one with three billion parameters that is optimized for on-device use, and a larger server-based model made for Apple's Private Cloud Compute. These models take us closer to…

Read More

What is the Significance of the Reference Model in Direct Preference Optimization (DPO)? A Practical Evaluation of Ideal KL-Divergence Constraints and Importance

Direct Preference Optimization (DPO) is a sophisticated training technique used for refining large language models (LLMs). It does not depend on a single gold reference like traditional supervised fine-tuning, instead, it trains models to identify quality differences among multiple outputs. Adding reinforcement learning approaches, DPO can learn from feedback, making it a useful technique for…

Read More

Introducing Torchchat: A Versatile Infrastructure for Speeding Up Llama 3, 3.1, along with Other Extensive Language Models on Laptop, Desktop, and Mobile Devices.

The rapid development of Large Language Models (LLMs) has transformed multiple areas including generative AI, Natural Language Understanding, and Natural Language Processing. However, hardware constraints have often limited the ability to run these models on devices such as laptops, desktops, or mobiles. In response to this, the PyTorch team has developed Torchchat, a versatile framework…

Read More

The Gemma 2-2B model has been launched, featuring an advanced text generation capability with 2.6 billion parameters, enhanced security measures, and the ability to deploy on the device itself.

Google's AI research team, DeepMind, has unveiled Gemma 2 2B, its new, sophisticated language model. This version, supporting 2.6 billion parameters, is optimized for on-device use and is a top choice for applications demanding high performance and efficiency. It holds enhancements for handling massive text generation tasks with more precision and higher levels of efficiency…

Read More

Baidu AI introduces a comprehensive self-reasoning structure to enhance the dependability and trackability of Retrieval-Augmented Generation (RAG) systems.

Researchers from Baidu Inc., China, have unveiled a self-reasoning framework that greatly improves the reliability and traceability of Retrieval-Augmented Language Models (RALMs). RALMs augment language models with external knowledge, decreasing factual inaccuracies. However, they face reliability and traceability issues, as noisy retrieval may lead to incorrect responses, and a lack of citations makes verifying these…

Read More

This AI Article Discusses an Overview of Modern Techniques Implemented for Denial in LLMs: Establishing Assessment Standards and Indicators for Evaluating Withholdings in LLMs.

A recent research paper by the University of Washington and Allen Institute for AI researchers has examined the use of abstention in large language models (LLMs), emphasizing its potential to minimize false results and enhance the safety of AI. The study investigates the current methods of abstention incorporated during the different development stages of LLMs…

Read More