Advancements in Large Language Models (LLMs) technology have burgeoned its use in clinical and medical fields, not only providing medical information, keeping track of patient records, but also holding consultations with patients. LLMs are equipped to generate long-form text compatible for responding to patient inquiries in a thorough manner, ensuring correct and instructive responses.
To…
Machine Translation (MT), part of Natural Language Processing (NLP), aims to automate the translation of text from one language to another using large language models (LLMs). The goal is to improve translation accuracy for better global communication and information exchange. The challenge in improving MT is using high-quality, diverse training data for instruction fine-tuning, which…
Artificial intelligence (AI) has reshaped multiple industries, including finance, where it has automated tasks and enhanced accuracy and efficiency. Yet, a gap still exists between the finance sector and AI community due to proprietary financial data and the specialized knowledge required to analyze it. Therefore, more advanced AI tools are required to democratize the use…
Anthropic AI's Claude family of models signifies a massive milestone in anomaly detection AI technology. The release of the Claude 3 series has seen a significant expansion in the models' abilities and performance, making them suitable for a broad spectrum of applications that span from text generation to high-level vision processing. This article aims to…
Large language models (LLMs) are renowned for their ability to perform specific tasks due to the principle of fine-tuning their parameters. Full Fine-Tuning (FFT) involves updating all parameters, while Parameter-Efficient Fine-Tuning (PEFT) techniques such as Low-Rank Adaptation (LoRA) update only a small subset, thus reducing memory requirements. LoRA operates by utilizing low-rank matrices, enhancing performance…
The field of Natural Language Processing (NLP) has seen a significant advancement thanks to Large Language Models (LLMs) that are capable of understanding and generating human-like text. This technological progression has revolutionized applications such as machine translation and complex reasoning tasks, and sparked new research and development opportunities.
However, a notable challenge has been the…
Language models are integral to the study of natural language processing (NLP), a field that aims to generate and understand human language. Applications such as machine translation, text summarization, and conversational agents rely heavily on these models. However, effectively assessing these approaches remains a challenge in the NLP community due to their sensitivity to differing…
Machine translation (MT) has advanced significantly due to developments in deep learning and neural networks. However, translating literary texts remains a significant challenge due to their complexity, figurative language, and cultural variations. Often referred to as the "last frontier of machine translation," literary translation represents a considerable task for MT systems.
Large language models (LLMs) have…
Foundation models are critical to AI's impact on the economy and society, and their transparency is imperative for accountability, understanding, and competition. Governments worldwide are launching regulations such as the US AI Foundation Model Transparency Act and the EU AI Act to promote this transparency. The Foundation Model Transparency Index (FMTI), rolled out in 2023,…
Large Language Models (LLMs) like GPT-4 have demonstrated proficiency in text analysis, interpretation, and generation, with their scope of effectiveness stretching to various tasks within the financial sector. However, doubts persist about their applicability for complex financial decision-making, especially involving numerical analysis and judgement-based tasks.
A key question is whether LLMs can perform financial statement…
Large multimodal language models (MLLMs) have the potential to process diverse modalities such as text, speech, image, and video, significantly enhancing the performance and robustness of AI systems. However, traditional dense models lack scalability and flexibility, making them unfit for complex tasks that handle multiple modalities simultaneously. Similarly, single-expert approaches struggle with complex multimodal data…