Large classroom sizes in computing education are making it crucial to use automation for student success. Automated feedback generation tools are becoming increasingly popular for their ability to rapidly analyze and test. Among these, large language models (LLMs) like GPT-3 are showing promise. However, concerns about their accuracy, reliability, and ethical implications do exist.
Historically, the…
The evaluation of artificial intelligence (AI) systems, particularly large language models (LLMs), has come to the fore in recent artificial intelligence research. Existing benchmarks, such as the original Massive Multitask Language Understanding (MMLU) dataset, have been found to inadequately capture the true potential of AI systems, largely due to their focus on knowledge-based questions and…
The assessment of artificial intelligence (AI) models, particularly large language models (LLMs), is a field of rapid research evolution. There is a growing focus on creating more rigorous benchmarks to assess these models' abilities across various complex tasks. Understanding the strengths and weaknesses of different AI systems through this field is crucial as it helps…
Transformer models have ushered in a new era of Natural Language Processing (NLP), but their high memory and computational costs often pose significant challenges. This has fueled the search for more efficient alternatives that uphold the same performance standards but require fewer resources. While some research has been conducted on Linear Transformers, the RWKV model,…
Large language models (LLMs) such as GPT-4, LLaMA, and PaLM are playing a significant role in advancing the field of artificial intelligence. However, the attention mechanism of these models relies on generating one token at a time, thus leading to high latency. To address this, researchers have proposed two approaches to efficient LLM inference, with…
Google has unveiled PaliGemma, a latest family of vision language models. These innovative models work by receiving both an image and text inputs, and generating text as output. The architecture of PaliGemma comprises of two components: an image encoder named SigLIP-So400m, and a text decoder dubbed Gemma-2B. SigLIP, which has the ability to understand both…
Google's latest innovation, a new family of vision language models called PaliGemma, is capable of producing text by receiving an image and a text input. Its architecture comprises the text decoder Gemma-2B and the image encoder SigLIP-So400m, which is also a model capable of understanding both text and visuals. On image-text data, the combined PaliGemma…
Artificial Intelligence (AI) relies on broad data sets sourced from numerous global internet resources to power algorithms that shape various aspects of our lives. However, there are challenges in maintaining data integrity and ethical standards, as the data often lacks proper documentation and vetting. The core issue is the absence of robust systems to guarantee…
Salesforce AI Research has made a significant development with the unveiling of the XGen-MM series. As part of their ongoing XGen initiative, this new development represents a significant step forward in the field of large foundation models. This advancement lays emphasis on the pursuit of advanced multimodal technologies, with XGen-MM integrating key improvements to redefine…
Large language models (LLMs) are crucial to processing extensive data quickly and accurately. Instruction tuning plays a vital role in enhancing their reasoning abilities and preparing them to solve new, unseen problems. However, the acquisition of high-quality instruction data on a large scale presents a significant challenge. Traditional methods that rely heavily on human input…