AI21 Labs has launched a new model, the Jamba-Instruct, which is designed to revolutionize natural language processing tasks for businesses. It does this by improving upon the limitations of traditional models, particularly their limited context capabilities. These limitations affect model effectiveness in tasks such as summarization and conversation continuation.
The Jamba-Instruct model significantly enhances this capability…
AI21 Labs has unveiled its Jamba-Instruct model, a solution designed to tackle the challenge of using large context windows in natural language processing for business applications. Traditional models usually have constraints in their context capabilities, impacting their effectiveness in tasks such as summarising lengthy documents or continuing conversations. In contrast, Jamba-Instruct overcomes these barriers by…
The challenge of efficiently determining a user's preferences through natural language dialogues, specifically in the context of conversational recommender systems, is a focus of recent research. Traditional methods require users to rate or compare options, but this approach fails when the user is unfamiliar with the majority of potential choices. Solving this problem through Large…
Continual learning (CL), the capability of systems to adapt over time without losing prior knowledge, presents a significant challenge. Neural networks, while adept at processing large amounts of data, can often suffer from catastrophic forgetting, when learning new information may erase what was previously learned. This becomes extremely problematic in scenarios with limited data retention…
Natural Language Processing (NLP) is an evolving field in which large language models (LLMs) are becoming increasingly important. The fine-tuning of these models has emerged as a critical process for enhancing their specific functionalities without imposing substantial computational demands. In this regard, researchers have been focusing on LLM modifications to ensure optimal performance even with…
Researchers in the field of large language models (LLMs) are focused on training these models to respond more effectively to human-generated text. This requires aligning the models with human preferences, reducing bias, and ensuring the generation of useful and safe responses, a task often achieved through supervised fine-tuning and complex pipelines like reinforcement learning from…