Large Language Models (LLMs) have shown significant impact across various tasks within the software engineering space. Leveraging extensive open-source code datasets and Github-enabled models like CodeLlama, ChatGPT, and Codex, they can generate code and documentation, translate between programming languages, write unit tests, and identify and rectify bugs. AlphaCode is a pre-trained model that can help…
The increased adoption and integration of large Language Models (LLMs) in the biomedical sector for interpretation, summary and decision-making support has led to the development of an innovative reliability assessment framework known as Reliability AssessMent for Biomedical LLM Assistants (RAmBLA). This research, led by Imperial College London and GSK.ai, puts a spotlight on the critical…
As the advancements in Large Language Models (LLMs) such as ChatGPT, LLaMA, and Mistral continue, there are growing concerns about their vulnerability to harmful queries. This has caused an immediate need to implement robust safeguards. Techniques such as supervised fine-tuning (SFT), reinforcement learning from human feedback (RLHF), and direct preference optimization (DPO) have been useful…
In today's ever-evolving financial universe, investors often feel inundated by the sheer volume of data and information that needs to be analyzed while examining investment prospects. Without the right tools and guidance, investors often struggle to make sound financial decisions. Traditional approaches or financial advisor services, although resourceful, can often turn out to be time-consuming…
In recent years, natural language processing (NLP) has seen significant advancements due to the transformer architecture. However, as these models grow in size, so do their computational costs and memory requirements, limiting their practical use to a select few corporations. Increasing model depths also present challenges, as deeper models need larger datasets for training, which…
Transformer architecture has greatly enhanced natural language processing (NLP); however, issues such as increased computational cost and memory usage have limited their utility, especially for larger models. Researchers from the University of Geneva and École polytechnique fédérale de Lausanne (EPFL) have addressed this challenge by developing DenseFormer, a modification to the standard transformer architecture, which…
Large Language Models (LLMs) have proven to be game-changers in the field of Artificial Intelligence (AI), thanks to their vast exposure to information and versatile application scope. However, despite their many capabilities, LLMs still face hurdles, especially in mathematical reasoning, a critical aspect of AI’s cognitive skills. To address this problem, extensive research is being…
Large Language Models (LLMs) have transformed the landscape of Artificial Intelligence. However, their true potential, especially in mathematic reasoning, remains untapped and underexplored. A group of researchers from the University of Hong Kong and Microsoft have proposed an innovative approach named 'CoT-Influx' to bridge this gap. This approach is aimed at enhancing the mathematical reasoning…
Large Language Models (LLMs) have become pivotal in natural language processing (NLP), excelling in tasks such as text generation, translation, sentiment analysis, and question-answering. The ability to fine-tune these models for various applications is key, allowing practitioners to use the pre-trained knowledge of the LLM while needing fewer labeled data and computational resources than starting…
Large language models (LLMs) have revolutionized the field of natural language processing due to their ability to absorb and process vast amounts of data. However, they have one significant limitation represented by the 'Reversal Curse', the problem of comprehending logical reversibility. This refers to their struggle in understanding that if A has a feature B,…
Apple researchers are implementing cutting-edge technology to enhance interactions with virtual assistants. The current challenge lies in accurately recognizing when a command is intended for the device amongst background noise and speech. To address this, Apple is introducing a revolutionary multimodal approach.
This method leverages a large language model (LLM) to combine diverse types of data,…