A new multimodal system, created by scientists from the University of Waterloo and AWS AI Labs, uses text and images to create a more engaging and interactive user experience. The system, known as Multimodal Augmented Generative Images Dialogues (MAGID), improves upon traditional methods that have used static image databases or real-world sources, which can pose…
Artificial Intelligence researchers are continuously striving to create models that can think, reason, and generate outputs similar to the way humans solve complex problems. However, Large Language Models (LLMs), the current best attempt at such a feat, often struggle to maintain factual accuracy, especially in tasks that require a series of logical steps. This lack…
Large language models (LLMs) like GPT-3 have proven to be powerful tools in solving various problems, but their capacity for complex mathematical reasoning remains limited. This limitation is partially due to the lack of extensive math-related problem sets in the training data. As a result, techniques like Instruction Tuning, which is designed to enhance the…
The development of large language models (LLMs) has significantly expanded the field of computational linguistics, moving beyond traditional natural language processing to include a wide variety of general tasks. These models have the potential to revolutionize numerous industries by automating and improving tasks that were once thought to be exclusive to humans. However, one significant…
The rise in the use of large language models (LLMs) such as GPT-3, OPT, and BLOOM on digital interfaces has highlighted the necessity of optimizing their operating infrastructure. LLMs are known for their colossal sizes and considerable computational resources required, making them difficult to efficiently implement and manage.
Researchers from various institutions, including Microsoft Research and…
Large Language Models (LLMs) are increasingly used for tasks related to Natural Language Processing (NLP) and Natural Language Generation (NLG). However, the understanding of LLMs in processing structured data like tables needs further exploration. Addressing this need, Microsoft researchers have developed a benchmark dubbed Structural Understanding Capabilities (SUC) to assess how well LLMs can comprehend…
Researchers at the Korea Advanced Institute of Science and Technology (KAIST) have created a unique benchmark system known as INSTRUCTIR to improve the fine-tuning of Large Language Models (LLMs). The goal is to enhance these models' response to individual user preferences and instructions across a variety of generative tasks.
Traditionally, retrieval systems have struggled to…
Large language models (LLMs) such as OpenAI's GPT series have had significant impacts across various industries since their development, with their ability to generate contextually rich and coherent text outputs. However, despite their potential, there is a significant issue with the precision of these models when utilizing external tools. There is a need for improvement…
Artificial intelligence heavily relies on the intricate relationship between visual and textual data, utilising this to comprehend and create content that bridges these two modes. Vision-Language Models (VLMs), which utilise datasets containing paired images and text, are leading innovations in this area. These models leverage image-text datasets to boost progress in tasks ranging from improving…
Deep reinforcement learning (RL) heavily relies on value functions, which are typically trained through mean squared error regression to ensure alignment with bootstrapped target values. However, while cross-entropy classification loss effectively scales up supervised learning, regression-based value functions pose scalability challenges in deep RL.
In classical deep learning, large neural networks show proficiency at handling classification…
Researchers from Shenzhen Research Institute of Big Data and The Chinese University of Hong Kong, Shenzhen, have introduced Apollo, a suite of multilingual medical language models, set to transform the accessibility of medical AI across linguistic boundaries. This is a crucial development in a global healthcare landscape where the availability of medical information in local…
Artificial intelligence possesses large language models (LLMs) like GPT-4 that enable autonomous agents to carry out complex tasks within various environments with unprecedented accuracy. However, these agents still struggle to learn from failures, which is where the Exploration-based Trajectory Optimization (ETO) method comes in. This training introduced by the Allen Institute for AI; Peking University's…