Researchers at MIT and the University of Washington have developed a new way to model human behaviour by accounting for unknown computational constraints that may impact problem-solving abilities. This new model enables an agent, human or machine, to infer another agent's computational constraints from their previous actions. The resulting 'inference budget' can be used to…
Researchers from the Massachusetts Institute of Technology (MIT) and the MIT-IBM Watson AI Lab have developed a machine-learning accelerator designed to be resistant to cyber-attacks, offering a secure platform for health-monitoring applications. The chip secures users' data whilst running large artificial intelligence (AI) models efficiently, protecting sensitive health and financial information.
The technology is capable of…
Large Language Models (LLMs) face several deployment challenges including latency issues triggered by memory bandwidth constraints. To mitigate such problems, researchers have resorted to applying weight-only quantization, a technique that compresses the parameters of LLMs to lower precision. Nevertheless, to effectively implement weight-only quantization, it is necessary to employ mixed-type matrix-multiply kernels that can manage,…
In the dynamic and complex field of robotics, decision-making often involves managing continuous action spaces and processing high volumes of data. This scenario demands sophisticated methodologies to handle the information efficiently and translate it into meaningful action. To address this challenge, researchers from the University of Maryland, College Park, and Microsoft Research have proposed a…
Artificial intelligence (AI) is continually evolving, with a significant challenge being the creation of systems that can effectively collaborate in dynamic environments. One area of focus in this regard is multi-agent reinforcement learning (MARL), which aims to teach agents to interact and adapt in these settings. However, these methods struggle with complexity and adaptability, especially…
Deep learning's exceptional performance across a wide range of scientific fields and its utilization in various applications have been proven. However, these models often come with many parameters that require a substantial amount of computational power for training and testing. The improvement of these models has been a primary focus of advancement in the field,…
Google DeepMind's AI systems AlphaProof and AlphaGeometry 2 have achieved a silver medal-level score at the 2024 International Mathematical Olympiad (IMO), a highly prestigious competition for budding mathematicians worldwide. Despite competing against 609 contestants, the AI models secured rankings among the top 58, by resolving four of the six difficult math problems, earning 28…
Researchers at MIT and the University of Washington have developed a computational model that can predict an intelligent agent's behaviors based on its "inference budget" (i.e. the limits on its computational resources). This was accomplished by using an algorithm that recorded all the decisions made by the agent within a given period of time. They…
Health-monitoring applications have become pivotal in managing chronic diseases and tracking fitness goals, largely due to the advent of machine-learning powered tools. However, these applications are often slow and energy-inefficient, largely due to the massive machine-learning models that require transfer between a smartphone and a central memory server. Despite the development of machine-learning accelerators that…
Researchers at MIT and the University of Washington have devised a model to predict the behaviour of AI systems and humans. The model factors in the indefinite computational constraints which may hinder an agent's problem-solving skills. By analysing only a few instances of previous actions, the model can predict an agent's future behaviour. The findings…
To build an Artificial Intelligence (AI) system that can work effectively with humans, it's critical to have an accurate model of human behavior. However, humans often act less optimally when making decisions, and these irrational behaviors are challenging to imitate. This is due to computational constraints - a person cannot dedicate decades to finding an…