Skip to content Skip to sidebar Skip to footer

Machine learning

Spectrum: An Artificial Intelligence Technique that Enhances LLM Training by Specifically Focusing on Layer Modules Depending on their Signal-to-Noise Ratio (SNR)

Large language models (LLMs) are essential for natural language processing (NLP), but they demand significant computational resources and time for training. This requirement presents a key challenge in both research and application of LLMs. The challenge lies in efficiently training these huge models without compromising their performance. Several approaches have been developed to address this issue.…

Read More

NASA and IBM scientists present INDUS: A collection of large, domain-specific language models designed for sophisticated scientific research.

Large Language Models (LLMs) have proven highly competent in generating and understanding natural language, thanks to the vast amounts of data they're trained on. Predominantly, these models are used with general-purpose corpora, like Wikipedia or CommonCrawl, which feature a broad array of text. However, they sometimes struggle to be effective in specialized domains, owing to…

Read More

Researchers from NASA and IBM Present INDUS: A Collection of Specific Large Language Models (LLMs) for Progressive Scientific Research.

Large Language Models (LLMs) are typically trained on large swaths of data and demonstrate effective natural language understanding and generation. Unfortunately, they can often fail to perform well in specialized domains due to shifts in vocabulary and context. Seeing this deficit, researchers from NASA and IBM have collaborated to develop a model that covers multidisciplinary…

Read More

MIT researchers studying the implications and uses of generative AI have been awarded another round of seed funding.

The MIT administration issued an open call for papers on generative AI, attracting 75 proposals above expectations. Following this, MIT's President, Sally Kornbluth, and Provost, Cynthia Barnhart, issued a second call for proposals which saw 53 submissions. Now, 16 of these submissions have been chosen by the faculty committee to receive exploratory funding for detailed…

Read More

AI deciphers the evolution of birdwing butterflies, providing insights into evolutionary disputes.

A study conducted by the University of Essex and published in Communications Biology utilized artificial intelligence to shed light on the longstanding debate around the theory of evolution. While Charles Darwin believed sexual selection was responsible for the diverse appearances of males in a species, Alfred Russel Wallace contended that natural selection influenced both sexes…

Read More

Scientists from the University of Toronto have unveiled a deep-learning model that surpasses the predictive capabilities of Google’s AI system for peptide structures.

Peptides are involved in various biological processes and are instrumental in the development of new therapies. Understanding their conformations, i.e., the way they fold into their specific three-dimensional structures, is critical for their functional exploration. Despite the advancements in modeling protein structures, like with Google's AI system AlphaFold, the dynamic conformations of peptides remain challenging…

Read More

Gibbs Diffusion (GDiff): An Innovative Bayesian Noisy Data Filtering Technique for Use in Image Cleaning and Cosmological Studies.

The advancement of deep generative models has brought new challenges in denoising, specifically in blind denoising where noise level and covariance are unknown. To tackle this issue, a research team from Ecole Polytechnique, Institut Polytechnique de Paris, and Flatiron Institute developed a novel method called the Gibbs Diffusion (GDiff) approach. The GDiff approach is a fresh…

Read More

MIT researchers examining the effects and uses of generative AI received the second phase of seed funding.

Last summer, the Massachusetts Institute of Technology (MIT) President Sally Kornbluth and Provost Cynthia Barnhart called on the academic community to provide effective strategies, policy proposals, and initiatives for the expansive realm of generative artificial intelligence (AI). They were met with an overwhelming response, receiving 75 submissions. After reviewing them, the committee selected 27 proposals…

Read More

MIT researchers examining the influences and uses of generative AI receive another phase of seed funding.

The Massachusetts Institute of Technology (MIT) launched a call papers to examine generative AI and formulate suggestions on its applications. The initial call was widely acclaimed and received 75 submissions, 27 of which were selected for seed funding. Seeing the enthusiasm, MIT President Sally Kornbluth and Provost Cynthia Barnhart announced a second call for proposals,…

Read More

FI-CBL: A Stochastic Approach for Perceptual Machine Learning Applying Specialist Guidelines

Concept-based learning (CBL) is a machine learning technique that involves using high-level concepts derived from raw features to make predictions. It enhances both model interpretability and efficiency. Among the various types of CBLs, the concept-based bottleneck model (CBM) has gained prominence. It compresses input features into a lower-dimensional space, capturing the essential data and discarding…

Read More

Scientists from the University of Wisconsin-Madison have suggested an adjustment method that uses a meticulously created artificial dataset consisting of numerical key-value retrieval assignments.

Large Language Models (LLMs) like GPT-3.5 Turbo and Mistral 7B often struggle to maintain accuracy while retrieving information from the middle of long input contexts, a phenomenon referred to as "lost-in-the-middle". This complication significantly hampers their effectiveness in tasks requiring the processing and reasoning over long passages, such as multi-document question answering (MDQA) and flexible…

Read More

ScaleBiO: An Innovative Bilevel Optimization Approach Utilizing Machine Learning, which can Efficiently Operate on 34B Logical Link Managers in Data Weight Adjustment Tasks

Scientists from The Hong Kong University of Science and Technology, and the University of Illinois Urbana-Champaign, have presented ScaleBiO, a unique bilevel optimization (BO) method that can scale up to 34B large language models (LLMs) on data reweighting tasks. The method relies on memory-efficient training technique called LISA and utilizes eight A40 GPUs. BO is attracting…

Read More