Skip to content Skip to sidebar Skip to footer

Machine learning

This small microchip can protect user information, while simultaneously facilitating effective processing on a mobile device.

Researchers from MIT and the MIT-IBM Watson AI Lab have designed a machine-learning accelerator that can improve the security of health-monitoring apps. These applications can be slow and inefficient due to the large machine-learning models that need to be transferred between a smartphone and a central memory server. Instead, the team developed a chip that…

Read More

A dataset for artificial intelligence paves the way for innovative tornado detection methods.

Meteorologists in the northern hemisphere have released a new, open-source dataset to aid in the detection and prediction of tornadoes. Given the working title "TorNet," the dataset was curated by Mark Veillette and James Kurdzo and includes radar data from thousands of US tornadoes over the past decade. Along with the dataset, models trained on…

Read More

In order to improve the efficiency of an AI assistant, begin by simulating the unpredictable actions of individuals.

MIT and the University of Washington researchers have developed a model to understand and predict human behavior by considering computational constraints that limit decision-making abilities for both humans and machines. One of the defining points about the model is its ability to derive an agent's computational constraints or "inference budget" based on a few previous…

Read More

For the improvement of AI assistance, initially emulate the unpredictable actions of humans.

Researchers from MIT and the University of Washington have developed a model to predict human behavior that accounts for computational constraints. These constraints can impact the problem-solving abilities of both human and artificial intelligences (AI). The model can infer an “inference budget”, a computation of the possible constraints on an agent’s problem-solving methods, by observing…

Read More

This small microchip can protect user information whilst facilitating effective processing on a mobile phone.

Researchers from MIT and the MIT-IBM Watson AI Lab have developed a machine-learning accelerator that combats cyber threats, thereby protecting sensitive user data. While certain health or fitness apps employ these vast machine-learning models to provide insights, they can sometimes prove to be sluggish and consume a large amount of energy due to the shifting…

Read More

A data set for artificial intelligence paves fresh avenues for identifying tornadoes.

With the arrival of spring in the Northern Hemisphere, tornado season begins. Despite their appearance being easily recognizable, detecting tornadoes with radar presents a challenge, making it difficult to pinpoint when and why these destructive phenomena occur. A breakthrough may be on the horizon with the TorNet dataset, recently released as open source by researchers…

Read More

To develop a superior artificial intelligence assistant, commence by replicating the illogical actions exhibited by humans.

Researchers from MIT and the University of Washington have created a model that considers the computational constraints of an agent, which could be a human or a machine, resulting in a more accurate prediction of the agent's actions. Humans, despite having sophisticated decision-making abilities, are often irrational and tend to behave suboptimally due to computational constraints.…

Read More

This compact microchip can protect user information and boost effective computing on a mobile phone.

Researchers from MIT and the MIT-IBM Watson AI Lab have developed a machine-learning accelerator that strengthens the security of health-monitoring apps and other AI-powered devices. These apps and devices, which can help manage chronic diseases or track fitness progress, run on complex machine-learning models. This requires substantial data transfer between a central memory server and…

Read More

A dataset on artificial intelligence paves new ways for identifying tornadoes.

A newly released open-source dataset could revolutionize the prediction and detection of tornadoes by using machine learning. Called TorNet, the Massachusetts Institute of Technology's dataset is composed of radar returns from thousands of tornadoes in the last 10 years. Alongside the dataset, models trained on it, which demonstrate the capacity of machine learning to identify…

Read More

Researchers from Carnegie Mellon University Investigate Professional Advice and Tactical Variations in Multi-Agent Mimic Learning.

Carnegie Mellon University researchers are exploring the complexities of multi-agent imitation learning (MAIL), a mediation strategy in which a group of agents (like drivers on a road network) are coordinated through action recommendations, despite the mediator lacking knowledge of their utility functions. The challenge of this approach lies in specifying the quality of those recommendations,…

Read More