Mathematician Justin Solomon is using modern geometric techniques to solve complex problems, often unrelated to shapes. He explains that geometric tools can be used to compare datasets, providing insight into the performance of machine-learning models. He asserted the significance of distance, similarity, curvature, and shape, all derived from geometry, in discussing data.
His Geometric Data…
Photolithography is an important process in the manufacture of computer chips and optical devices like lenses, using light to carve precise features onto a surface. However, minor deviations during the manufacturing process can lead to these devices underperforming when compared to the original designs. To address this issue, researchers from MIT and the Chinese University…
An MIT study has taken a significant step towards the development of computational models capable of mimicking the structure and function of the human auditory system. The models could have applications in the production of improved hearing aids, cochlear implants, and brain-machine interfaces. The researchers discovered that modern machine learning-derived computational models are progressing towards…
Over two millennia ago, the ancient mathematician Euclid, widely recognized as the father of geometry, shifted our perspective on shapes. Today, Justin Solomon of MIT uses contemporary geometric methods to tackle complex challenges seemingly unrelated to shapes. Solomon utilizes geometric tools to analyze high-dimensional datasets, providing insights about the potential performance of machine learning models.…
Photolithography, the process of using light to etch features onto surfaces for the manufacturing of computer chips and optical devices, often fails to accurately match designer’s intentions due to tiny inconsistencies in the manufacturing process. Researchers at MIT and the Chinese University of Hong Kong have developed a machine-learning digital simulator in an effort to…
A recent study from MIT suggests that computational models built using machine learning could closely mimic the structure and function of the human auditory system. This discovery could potentially help researchers in designing more effective hearing aids, cochlear implants, and brain-machine interfaces.
In the largest-ever examination of deep learning neural networks trained for auditory tasks, the…
Since the 1970s, finding new antibiotics has been challenging. The World Health Organization now considers the antimicrobial resistance crisis as one of the top 10 global public health threats. Bacteria can become resistant to antibiotics, especially when an infection is treated repeatedly. Some bacteria become metabolically inert, avoiding detection by antibiotics that only respond to…
Data is as valuable as currency in today's world, leading many industries to face the challenge of sharing and enhancing data across various entities while also protecting privacy norms. Synthetic data generation has provided organizations with a means to overcome privacy obstacles and unlock potential for collaborative innovation. This is especially relevant in distributed systems,…
Effector is a new Python library developed to address the limitations of traditional methods used to explain black-box models. Current global feature effect methods, including Partial Dependence Plots (PDP) and SHAP Dependence Plots, often fall short in explaining such models, especially when feature interactions or non-uniform local effects occur, resulting in potentially misleading interpretations.
To overcome…
Researchers at MIT and the MIT-IBM Watson AI Lab have developed an AI system designed to educate users on when to trust an AI's decision-making process - for instance, a radiologist determining if a patient's X-ray shows signs of pneumonia. The training system identifies scenarios where the human should not trust the AI model, automatically…
MIT has released a set of policy briefs offering guidance for the governance of artificial intelligence (AI) for lawmakers. The goal of these documents is to strengthen the U.S.'s leadership in AI, minimize potential harm from misapplication, and promote the beneficial uses of AI in our society.
The primary policy paper, titled “A Framework for U.S.…