Skip to content Skip to sidebar Skip to footer

Machine learning

Deep neural networks demonstrate potential as representations of human auditory perception.

MIT researchers have found that computational models designed with machine learning techniques are becoming more accurate in mimicking the structure and function of the human auditory system. They believe these models could assist in the development of improved hearing aids, cochlear implants and brain-machine interfaces. In an extensive study of deep neural networks trained for…

Read More

GPT-Based Digital Twin Technique: A Comprehensive Language Model for Establishing Digital Twins in Clinical Trials

Clinical trials are crucial for medical advancements as they evaluate the safety and efficacy of new treatments. However, they often face challenges including high costs, lengthy durations, and the need for large numbers of participants. A significant challenge in optimizing clinical trials is accurately predicting outcomes. Traditional methods of research, dependent on electronic health records…

Read More

This research in machine learning provides an examination of enhancing differential privacy in high-dimensional linear models: striking a balance between data confidentiality and accuracy.

In the field of data science, linear models such as logistic and linear regression are highly valued due to their simplicity and efficacy in creating meaningful inferences from data. They are particularly useful in scenarios where there is a linear relationship between outcomes and input variables, aiding in predicting customer demand, assessing medical risks, and…

Read More

Introducing ChemBench: A Device Learning Infrastructure Crafted to Thoroughly Assess the Chemical Comprehension and Logical Skills of Language Model Machines.

The field of chemistry has been positively impacted by the boom in artificial intelligence research, specifically through the introduction of large language models (LLMs). These models have the ability to sift through, interpret, and analyze extensive datasets, often encapsulated in dense textual formats. The utilization of these models has revolutionized tasks associated with chemical properties…

Read More

TFB: A Free-to-Use Machine Learning Repository Developed for Time Series Analysts

Robust benchmarks are essential for researchers as they provide a strict framework for evaluating novel methods across an array of datasets. These benchmarks contribute significantly to the advancement of the industry by fostering innovation and ensuring fair comparisons among competing methods. However, existing benchmarks for Time Series Forecasting (TSF) are limited in their ability to…

Read More

Scientists from ETH Zurich, EPFL, and Microsoft have presented QuaRot, a new machine learning technique that facilitates 4-bit inference of Latent Linear Models (LLMs) by eliminating unconventional features.

Large language models (LLMs) have substantially impacted various applications across sectors by offering excellent natural language processing capabilities. They help generate, interpret, and understand the human language, opening routes for new technological advancements. However, LLMs demand considerable computational, memory, and energy resources, particularly during the inference phase, which restricts operational efficiency and their deployment. The extensive…

Read More

The automated system instructs users on the appropriate time to work together with an AI assistant.

Researchers from MIT and the MIT-IBM Watson AI Lab have developed an onboarding process which teaches users how to effectively collaborate with artificial intelligence (AI) assistants. The system was designed to provide guidance to users and to improve collaboration between humans and AI. The automated system learns how to create the onboarding process by gathering…

Read More

The team from MIT publishes research papers on the administration of Artificial Intelligence.

A committee of MIT leaders and scholars has released a set of policy briefs offering a framework for the governance of artificial intelligence (AI), to guide U.S. policymakers. This comes amid heightened interest in AI technology and significant new industry investment. The aim of these papers is to strengthen U.S. leadership in AI, while also mitigating…

Read More

Human hearing models indicate potential through the use of deep neural networks.

A study from MIT has shown that machine learning can be employed to improve the design of hearing aids, cochlear implants, and brain-machine interfaces. These computational models are designed to simulate the function and structure of the human auditory system. The research is the largest of its kind in studying deep neural networks that have…

Read More

The automated system provides guidance on when to engage with an AI assistant for collaboration.

Researchers from MIT and the MIT-IBM Watson AI Lab have developed an automated system that trains users on when to collaborate with an AI assistant. In medical fields such as radiology, this system could guide a practitioner on when to trust an AI model’s diagnostic advice. The researchers claim that their onboarding procedure led to…

Read More