MIT startup Striv has developed tactile sensing technology that inserts into shoes, effectively tracking force, movement, and form via algorithms that interpret tactile data. The developer, Axl Chen, initially applied his work in a virtual reality gaming context but pivoted to athletics, and several professional athletes, including US marathoner Clayton Young and Olympian Damar Forbes,…
MIT engineers have identified new materials that could be more efficient conductors of protons – the nucleus of a hydrogen atom – which could pave the way for a number of climate-protecting technologies. Today's proton-conducting materials require very high temperatures, but lower-temperature alternatives could boost new technologies such as fuel cells that produce clean electricity…
Researchers from the Massachusetts Institute of Technology (MIT) are using machine learning to explore the concept of short-range order (SRO) in metallic alloys at atomic levels. The team believes that understanding SRO is key to creating high-performance alloys with unique properties but this has been a challenging area to explore. High-entropy alloys are of particular…
The Short-Range Order (SRO), the arrangement of atoms over small distances, plays a crucial role in materials’ properties, yet it has been understudied in metallic alloys. However, recent attention has been drawn to this concept as it is a contributing step towards developing high-performing alloys known as high-entropy alloys. Understanding how atoms self-arrange can pose…
An international team of researchers, including members from MIT (Massachusetts Institute of Technology), has developed a machine learning-based approach to predict the thermal properties of materials. This understanding could help improve energy efficiency in power generation systems and microelectronics.
The research focuses on phonons - subatomic particles that carry heat. Properties of these particles affect…
Solar cells, transistors, LEDs, and batteries with boosted performance require better electronic materials which are often discovered from novel compositions. Scientists have turned to AI tools to identify potential materials from millions of chemical formulations, with engineers developing machines that can print hundreds of samples at a time, based on compositions identified by AI algorithms.…
A group of MIT researchers has developed a machine learning (ML) approach that could revolutionize the way we design catalysts for chemical reactions. The method simplifies the intricate process of designing new compounds or alloys, traditionally dependent on the intuition of experienced chemists, by using ML to provide more detailed information than conventional techniques can.
The…
Researchers from MIT have developed a machine learning approach that could replace the intuition-based methods typically used in the creation of catalysts. The team, led by graduate student Xiaochen Du, devised a system that offers more detailed insights than conventional techniques, identifying previously undiscovered atomic configurations in a material that had been researched for three…
MIT researchers have developed a machine learning-based method for designing new compounds or alloys for use as catalysts in chemical reactions. Traditional methods of designing such materials rely on static observations of a single configuration, out of millions of possibilities, and the intuition of experienced chemists. However, the new method employs machine learning algorithms to…
A team of researchers at the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) has developed a revolutionary computational design system that enhances the performance of microstructured materials. These materials, ubiquitous in everything from cars to airplanes, offer essential durability and strength. This project, led by Beichen Li, a CSAIL affiliate and an MIT PhD…