Skip to content Skip to sidebar Skip to footer

McGovern Institute

A novel computational method could simplify the process of creating beneficial proteins.

MIT researchers have developed a computational model that helps predict mutations leading to better proteins, based on a relatively small dataset. In the current process of creating proteins with useful functions, scientists usually start with a natural protein and put it through numerous rounds of random mutation to generate an optimized version. This process has led…

Read More

A novel computational method may simplify the process of designing beneficial proteins.

In a search to create more effective proteins for various purposes, including research and medical applications, researchers at MIT have developed a new computational approach aimed at predicting beneficial mutations based on limited data. Modeling this technique, they produced modified versions of green fluorescent protein (GFP), a protein found in certain jellyfish, and explored its…

Read More

A novel computational method may simplify the process of engineering beneficial proteins.

Scientists at the Massachusetts Institute of Technology (MIT) have developed a computational tool that can predict mutations to help create better proteins. The tool facilitates the creation of improved versions of proteins through strategic mutations and could offer significant advancements in neuroscience research and medical applications. One common procedure for producing improved proteins involves introducing…

Read More

A novel computational method could simplify the process of designing beneficial proteins.

Researchers at MIT have developed a computational method to hasten the process of generating optimized versions of proteins, using only a small amount of data. The researchers have generated proteins with mutations capable of improving Green Fluorescent Protein (GFP) and a protein used to deliver DNA for gene therapy from an adeno-associated virus (AAV). The process…

Read More

A novel computational method might simplify the process of designing beneficial proteins.

Protein engineering is a complicated process, typically involving the random mutation of a natural protein with a desirable function, repeated until an optimal version of the protein is developed. This process has proven successful for proteins like the green fluorescent protein (GFP), but this isn't the case for all proteins. Researchers at MIT have developed…

Read More

A novel computational method could simplify the process of designing beneficial proteins.

MIT researchers have developed a computational approach to help predict mutations that can create optimized versions of certain proteins, working with a relatively small amount of data. The team believes the system could lead to potential medical applications and neuroscience research tools. Usually, protein engineering begins with a natural protein that already has a desirable function,…

Read More

A novel computational algorithm could simplify the process of creating beneficial proteins.

MIT researchers have developed a computational approach that predicts protein mutations, based on limited data, that would enhance their performance. The researchers used their model to create optimized versions of proteins derived from two naturally occurring structures. One of these was the green fluorescent protein (GFP), a molecule used to track cellular processes within the…

Read More

A novel computational method may simplify the process of designing beneficial proteins.

Scientists at Massachusetts Institute of Technology (MIT) have developed a computational model aimed at simplifying the process of protein engineering. The researchers applied mutations to natural proteins with desirable traits, such as the ability to emit fluorescent light, using random mutation to cultivate better versions of the protein. The technique was deployed using the green…

Read More

The conference emphasizes the magnitude of the mental health issue and innovative approaches to identifying and treating it.

Read More

The brain’s language network has to exert more effort when dealing with complicated and unfamiliar sentences.

Researchers from MIT, led by neuroscience associate professor Evelina Fedorenko, have used an artificial language network to identify which types of sentences most effectively engage the brain’s language processing centers. The study showed that sentences of complex structure or unexpected meaning created strong responses, while straightforward or nonsensical sentences did little to engage these areas.…

Read More

The brain’s language network has to exert more effort when dealing with sentences that are intricate and unknown.

Researchers from MIT have been using a language processing AI to study what type of phrases trigger activity in the brain's language processing areas. They found that complex sentences requiring decoding or unfamiliar words triggered higher responses in these areas than simple or nonsensical sentences. The AI was trained on 1,000 sentences from diverse sources,…

Read More