In a keynote address at MIT's Generative AI Week on November 28, iRobot co-founder Rodney Brooks highlighted the potential dangers of overestimating the capabilities of generative AI, an emerging technology that supports powerful tools like OpenAI’s ChatGPT and Google’s Bard. He urged that while the technology has significant capabilities, the illusion that it can solve…
At the Generative AI: Shaping the Future symposium, Rodney Brooks, keynote speaker and co-founder of iRobot, cautioned against overestimating the capabilities of Generative AI. The technology supports powerful tools like OpenAI’s ChatGPT and Google’s Bard, but Brooks argued that no single technology ever exceeds all others. He stressed the importance of responsible development and use…
In a recent symposium titled "Generative AI: Shaping the Future", iRobot co-founder Rodney Brooks urged caution regarding the unbridled optimism around generative artificial intelligence (AI). Generative AI uses machine-learning models to generate new material similar to the data it has been trained on, and has proven capable of creative writing, translation, generating code, and creating…
During the kickoff event of MIT’s Generative AI Week, the “Generative AI: Shaping the Future” symposium, Rodney Brooks, co-founder of iRobot, cautioned attendees about the dangers of overestimating the capabilities of generative AI technology. Brooks, also a professor emeritus at MIT and former director of the Computer Science and Artificial Intelligence Laboratory (CSAIL), warned that…
Scientists from the McGovern Institute for Brain Research at MIT, the Broad Institute of MIT and Harvard, and the National Center for Biotechnology Information at the National Institutes of Health, have developed a new search algorithm to find enzymes of interest in vast microbial sequence databases. This algorithm, called Fast Locality-Sensitive Hashing-based clustering (FLSHclust), discovered…
Researchers at MIT, Harvard, and the National Institutes of Health have utilized a new search algorithm to identify 188 different types of rare CRISPR systems in bacterial genomes. This data holds potential to advance genome-editing technology, enabling more precise treatments and diagnostics.
The algorithm, developed in the lab of prominent CRISPR researcher, Professor Feng Zhang uses…
Scientists from the McGovern Institute for Brain Research at MIT, the Broad Institute of MIT and Harvard, and the National Center for Biotechnology Information at the National Institutes of Health have developed a new algorithm that can sift through massive amounts of genomic data to identify unique CRISPR systems. Known as Fast Locality-Sensitive Hashing-based clustering…
Microbial sequence databases hold a vast array of information about enzymes and other molecules that could be utilized in biotechnology applications. However, the sheer size of these databases has made it challenging to efficiently search for specific enzymes of interest.
Researchers from the McGovern Institute for Brain Research at MIT, the Broad Institute of MIT and…
The "Generative AI: Shaping the Future" symposium, the kickoff event of MIT’s Generative AI Week, drew hundreds of attendees both from academia and industry. Rodney Brooks, iRobot co-founder and keynote speaker, warned attendees against uncritically overestimating the capabilities of generative AI, a technology increasingly powering tools such as OpenAI’s ChatGPT and Google’s Bard.
Generative AI…
MIT researchers have been utilizing computational models derived from deep neural networks which mimic the structure and function of the human auditory system, a development that could help in the design of better hearing aids, cochlear implants, and brain-machine interfaces. This represents a significant step in understanding how the human brain processes sound and how…
A study by MIT neuroscientists, utilising an artificial language network, discovered the type of sentences most likely to stimulate the brain’s key language processing centers. The study concluded that complex sentences, with unusual grammar or unexpected meaning, generate stronger responses. In contrast, simplistic sentences marginally engaged these regions, while nonsensical sequences of words had little…