Skip to content Skip to sidebar Skip to footer

MIT Schwarzman College of Computing

Comprehending the visual comprehension of language models.

Massachusetts Institute of Technology's Computer Science and Artificial Intelligence Laboratory (CSAIL) has revealed that language models without image experience still understand the visual world. The team found that even without seeing images, language models could write image-rendering code that could generate detailed and complicated scenes. The knowledge that enabled this process came from the vast…

Read More

Scientists improve the peripheral vision capabilities in AI models.

Researchers at Massachusetts Institute of Technology (MIT) have developed an image dataset to simulate peripheral vision in artificial intelligence (AI) models. This step is aimed at helping such models detect approaching dangers more effectively, or predict whether a human driver would take note of an incoming object. Peripheral vision in humans allows us to see…

Read More

Three inquiries: Understanding the essentials about audio deepfakes.

The recent misuse of audio deepfakes, including a robocall purporting to be Joe Biden in New Hampshire and spear-phishing campaigns, has prompted questions about the ethical considerations and potential benefits of this emerging technology. Nauman Dawalatabad, a postdoctoral researcher, discussed these concerns in a Q&A prepared for MIT News. According to Dawalatabad, the attempt to obscure…

Read More

Improving software testing through the application of generative artificial intelligence.

Generative AI, renowned for its capability to autonomously produce text and images, plays a crucial role in creating realistic synthetic data from diverse scenarios, helping organizations optimize operations. A notable initiative in the field is the Synthetic Data Vault (SDV), developed by DataCebo, an MIT spinoff. This generative system aids organizations in creating synthetic data…

Read More

Scientists improve side vision capabilities in AI modules.

Researchers from MIT have developed an image dataset that simulates peripheral vision in machine learning models, improving their object detection capabilities. However, even with this modification, the AI models still fell short of human performance. The researchers discovered that size and visual clutter, factors that impact human performance, largely did not affect the AI's ability.…

Read More

Three Inquiries: Essential Information on Audio Deepfakes You Should Understand

Audio deepfakes have recently been in the news, particularly in regards to their negative impacts, such as fraudulent robocalls pretending to be Joe Biden, encouraging people not to vote. These malicious uses could negatively affect political campaigns, financial markets, and lead to identity theft. However, Nauman Dawalatabad, a postdoc student at MIT, argues that deepfakes…

Read More

Improving software testing through the utilization of generative AI

Generative AI has vast potential in creating synthetic data that can mimic real-world scenarios, which in turn can aid organizations in improving their operations. In line with this, DataCebo, a spinout from MIT, has developed a generative software system referred to as the Synthetic Data Vault (SDV), which has been employed by thousands of data…

Read More

Scientists improve the side vision capabilities in artificial intelligence models.

Peripheral vision, most humans' mechanism to see objects not directly in their line of sight, although with less detail, does not exist in AI. However, researchers at MIT have made significant progress towards this by developing an image dataset to simulate peripheral vision in machine learning models. The research indicated that models trained with this…

Read More

Three Queries: Essential Information Regarding Deepfakes in the Audio Realm

Nauman Dawalatabad, a postdoctoral researcher discusses the concerns and potential benefits of audio deepfake technology in a Q&A with MIT News. He addresses ethical considerations regarding the concealment of a source speaker’s identity in audio deepfakes, noting that speech contains a wealth of sensitive personal information beyond identity and content, such as age, gender and…

Read More

Improving software testing through the application of generative AI.

Generative AI, which can create text and images, is becoming an essential tool in today's data-driven society. It's now being utilized to produce realistic synthetic data, which can effectively solve problems where real data is limited or sensitive. For the past three years, DataCebo, an MIT spinoff, has been offering a Synthetic Data Vault (SDV)…

Read More