Skip to content Skip to sidebar Skip to footer

MIT Schwarzman College of Computing

Start developing a more efficient AI assistant by first understanding and replicating the unpredictable actions of humans.

Artificial Intelligence (AI) researchers at MIT and the University of Washington have created a model that can predict a human's decision-making behaviour by learning from their past actions. The model incorporates the understanding that humans can behave sub-optimally due to computational constraints — essentially the idea that humans can't spend indefinitely long periods considering the…

Read More

A versatile approach to assist animators in enhancing their artistry.

Researchers from MIT have developed a new technique that could offer artists greater control over animations. This new method utilizes barycentric coordinates, mathematical functions that dictate how 2D and 3D shapes can bend, stretch and move. Significantly, this technique gives animators the flexibility to define their preferred 'smoothness energies' that best suits their artistic vision. Presently,…

Read More

Bridging the gap between design and production for optical instruments.

Photolithography, the technique used to create computer chips and optical devices, often results in minuscule deviations from design intentions. With the goal of closing the gap between design and manufacturing, a team of researchers from MIT and the Chinese University of Hong Kong, led by mechanical engineering graduate student Cheng Zheng, used machine learning to…

Read More

An adaptable approach to assist artists in enhancing animation.

Researchers at MIT have developed a new method that allows animators to have more control over their creations. Using mathematical functions called barycentric coordinates, they can now better control how 2D and 3D shapes stretch, move, and bend. Unlike traditional methods that only offered limited options for animation, this new method provides animators a level…

Read More

An adaptable approach that assists artists in enhancing animation.

A new technique introduced by MIT researchers promises artists greater control over the animations of heroes and villains in animated movies and video games. The method generates barycentric coordinates - mathematical functions that define how 2D and 3D shapes can move, bend, and stretch in space. This allows an artist to shape the motion of…

Read More

Bridging the divide between design and production for optical instruments

Photolithography is a crucial process in the manufacturing of computer chips and other optical devices, but validity between the design and the final product often falls short due to tiny variations in the manufacturing process. To address this issue, researchers from MIT and the Chinese University of Hong Kong have developed a machine-learning aided digital…

Read More

A versatile approach designed to assist illustrators in enhancing their animation.

Researchers at MIT have developed a technique that could allow animators to have greater control over their characters. The method uses mathematical functions known as barycentric coordinates, which define how 2D and 3D shapes can bend, stretch, and move through space. This technique could provide artists with more flexibility in their animations, unlike previous techniques…

Read More

Bridging the gap between design and production for optical instruments.

Photolithography, a process used to fabricate computer chips and optical devices, often falls short of designers' intentions due to tiny deviations during manufacturing. To address this, researchers from MIT and the Chinese University of Hong Kong have used machine learning to develop a digital simulator that precisely replicates a specific photolithography manufacturing process. The simulator…

Read More

A versatile approach for assisting artists in enhancing animation.

An innovative technique introduced by MIT researchers could offer greater control to artists who create animations for films and video games. The researchers' method revolves around generating mathematical functions known as barycentric coordinates. These coordinates determine how 2D and 3D shapes can stretch, bend and move in space. This new technique is distinctive in its…

Read More