Skip to content Skip to sidebar Skip to footer

National Science Foundation (NSF)

This small microchip can protect user information while also enhancing effective computing on a mobile device.

Researchers from the MIT-IBM Watson AI Lab and MIT have developed a secure machine-learning accelerator that can efficiently run large AI models while protecting user data. The device keeps user medical records, personal finance information, and other sensitive data confidential, and it is currently resistant to two of the most common security threats. The team…

Read More

To enhance the effectiveness of an AI assistant, begin by simulating the unpredictable actions of people.

Scientists from the Massachusetts Institute of Technology (MIT) and the University of Washington have developed an approach to mechanically infer the computational weaknesses of an AI or human agent by observing prior activities. This perceptible agent’s "inference budget" can be used to predict future behavior. Used in forthcoming AI structures, the technique could allow them…

Read More

This small microchip can protect user information and promote effective processing on a mobile phone.

Health-monitoring apps that use machine learning can be helpful in managing chronic diseases and fitness goals; however, they can also be slow and use a lot of energy. This is mainly due to machine learning models being shuttled between a smartphone and a central memory server. While machine-learning accelerators are often used to streamline computations,…

Read More

To develop an improved AI assistant, begin by simulating the unpredictable actions of humans.

Researchers at MIT and the University of Washington have developed a method to effectively model human behavior, accounting for the computational constraints that limit our decision-making abilities. This model, known as the "inference budget," enables predictions of an individual’s future actions based on their past behaviors. This is particularly useful in AI development, allowing machines…

Read More

This compact chip has the capability to secure user information whilst facilitating effective processing on a mobile device.

Researchers from MIT and the MIT-IBM Watson AI Lab have developed a machine-learning accelerator that provides strong data protection while allowing massive AI models to run effectively on individual devices. The innovations applied in developing the chip help protect sensitive information such as health records or financial data against common cyber-attacks, without negatively affecting the…

Read More

Begin developing a superior AI assistant by imitating the unpredictable actions of individuals.

MIT and the University of Washington researchers have devised a method to model human or machine agent behaviour incorporating unknown computational constraints limiting problem-solving abilities. The technique generates an "inference budget" by observing a few previous actions, effectively predicting future behaviour. Lead author Athul Paul Jacob believes the work could help AI systems better understand…

Read More

This compact microchip can ensure the protection of user information, while facilitating effective processing on a mobile phone.

Researchers at MIT and the IBM Watson AI lab have developed a machine-learning accelerator chip which is more resilient to common types of cyber attacks. The chip is designed to protect sensitive user data, such as health records or financial information, whilst also enabling large-scale AI models to run efficiently on devices. The design of…

Read More

To develop an improved AI assistant, begin by simulating the unpredictable actions of human beings.

Researchers at MIT and the University of Washington have devised a model for detecting the computational limitations of an agent, whether human or machine, that obstruct their ability to solve problems. Agents' performance is monitored to calculate their "inference budget", estimates of the time and effort likely to be re-invested in similar tasks, which then…

Read More

This miniature device can protect user information while facilitating effective computation on a mobile device.

MIT and the MIT-IBM Watson AI Lab researchers have developed a machine-learning accelerator ingrained with defenses against the most common cyber-attacks. The device, which could find use in advanced AI applications like VR/AR and autonomous vehicles, offers robust security at the cost of increased power consumption and a slightly higher price tag. But maintaining optimum…

Read More

For crafting an improved AI assistant, begin by emulating the unpredictable tendencies of humans.

Researchers from MIT and University of Washington have developed a novel method that utilizes a good model of human behaviour, specifically involving the computational constraints in decision-making, in order to improve the collaboration between AI and humans. The unique technique of their new model permits an automatic inference regarding an agent's computational constraints solely based…

Read More

This small microchip can protect user information, while simultaneously facilitating effective processing on a mobile device.

Researchers from MIT and the MIT-IBM Watson AI Lab have designed a machine-learning accelerator that can improve the security of health-monitoring apps. These applications can be slow and inefficient due to the large machine-learning models that need to be transferred between a smartphone and a central memory server. Instead, the team developed a chip that…

Read More

In order to improve the efficiency of an AI assistant, begin by simulating the unpredictable actions of individuals.

MIT and the University of Washington researchers have developed a model to understand and predict human behavior by considering computational constraints that limit decision-making abilities for both humans and machines. One of the defining points about the model is its ability to derive an agent's computational constraints or "inference budget" based on a few previous…

Read More