Skip to content Skip to sidebar Skip to footer

Profile

A cooperative effort within a community for advancement.

The Massachusetts Institute of Technology (MIT) has been collaborating with Roxbury, Massachusetts' Camfield Estates housing development for over a decade, helping to combat systemic racial disparities in housing. Led by Associate Professor Catherine D'Ignazio, a team from the MIT Initiative for Combatting Systemic Racism (ICSR) primarily focus their research on the impact of data and…

Read More

Developing custom coding languages for effective visual artificial intelligence systems.

Associate Professor Jonathan Ragan-Kelley at the MIT Department of Electrical Engineering and Computer Science is a creator behind many innovative technologies used in photographic image processing and editing. Ragan-Kelley has contributed to the visual effects industry and was instrumental in designing the Halide programming language, a tool widely used in the photo editing sector. Ragan-Kelley,…

Read More

A computer science expert explores new limits of geometry.

More than 2,000 years after Greek mathematician Euclid laid the groundwork for geometry, Justin Solomon, an associate professor at the MIT Department of Electrical Engineering and Computer Science, is leveraging modern geometric techniques to solve complex problems that seemingly have no connection to shapes. Solomon's work involves using geometrical structures in comparing datasets to predict…

Read More

A computer engineer is expanding the limits of geometric theory.

Justin Solomon, an associate professor at the Massachusetts Institute of Technology (MIT), is applying modern geometric techniques to solve complex problems in data science, computer graphics, and artificial intelligence. He draws upon the principles of geometry— the study of shapes—pioneered over 2,000 years ago by Greek mathematician Euclid. The relevance of geometric principles extends beyond…

Read More

A computer technologist advances the limits of geometry.

Justin Solomon, an Associate Professor in the MIT Department of Electrical Engineering and Computer Science (EECS), is using geometric techniques to solve complex computing problems. Solomon says this method is ideally suited to finding solutions in data science, as it can enable a deeper understanding of the distances, similarities, curvature and shape data. About half…

Read More

A computer scientist is advancing the limits of geometry.

Justin Solomon, an associate professor in the MIT Department of Electrical Engineering and Computer Science (EECS) and a member of the Computer Science and Artificial Intelligence Laboratory (CSAIL), is using advanced geometric techniques to deal with complex issues that don't seemingly have any connection with geometry. Solomon explains that geometric terms like distance, similarity, and…

Read More

A computer engineer explores the limits of geometric principles.

More than 2000 years after Greek mathematician Euclid revolutionized the understanding of shapes, MIT associate professor Justin Solomon uses modern geometric techniques to resolve complex problems that seemingly have little to do with shapes. Adopting these techniques to compare two datasets for machine learning model performance, Solomon argues that geometric tools can reveal whether the…

Read More

A computer scientist advances the limits of geometry.

Over two thousand years ago, Greek mathematician Euclid revolutionized the world with his groundbreaking work in geometry. Today, MIT Associate Professor Justin Solomon is using contemporary geometric techniques to solve intricate problems, which often don't appear to be related to shapes, albeit heavily correlate with data arrangement in a high-dimensional space. Solomon, who is also a…

Read More

A computer technologist is advancing the limits of geometry.

Justin Solomon, an associate professor in the MIT Department of Electrical Engineering and Computer Science and a member of the Computer Science and Artificial Intelligence Laboratory (CSAIL), employs modern geometric techniques to solve intricate problems often unrelated to shapes. Using these geometric methods, data sets can be compared and the high-dimensional space in which the…

Read More