Skip to content Skip to sidebar Skip to footer

Research

An algorithm developed at MIT assists in predicting the occurrence rate of severe weather.

Scientists from MIT and the Pacific Northwest National Laboratory have developed a way to increase the accuracy of large-scale climate models, allowing for more precise predictions of extreme weather incidents in specific locations. Their process involves using machine learning in tandem with existing climate models to make the models' predictions closer to real-world observations. This…

Read More

Designing domestic robots to possess a bit of general knowledge.

As robots are increasingly being deployed for complex household tasks, engineers at MIT are trying to equip them with common-sense knowledge allowing them to swiftly adapt when faced with disruptions. A newly developed method by the researchers merges robot motion data and common-sense knowledge from extensive language models (LLMs). The new approach allows a robot to…

Read More

Large language models utilize a surprisingly straightforward method to access some stored information.

Large language models (LLMs), such as those which power AI chatbots like ChatGPT, are highly complex. While these powerful tools are used in diverse applications like customer support, code generation, and language translation, they remain somewhat of a mystery to the scientists who work with them. To develop a deeper understanding of their inner workings,…

Read More

Large language models utilize an unexpectedly uncomplicated method to recall certain stored information.

Large language models (LLMs) that power artificial intelligence chatbots like ChatGPT are extremely complex and their functioning isn't fully understood. These LLMs are used in a variety of areas such as customer support, code generation and language translation. However, researchers from MIT and other institutions have made strides in understanding how these models retrieve stored…

Read More

Researchers utilize shadows to create 3D scene models, incorporating objects that are normally obstructed from sight.

Researchers from MIT and Meta have developed a computational vision technique, named PlatoNeRF, that allows for creating vivid, accurate 3D models of a scene from a single camera view. The innovative technology uses the shadowing in a scene to determine what could lie within obstructed areas. By combining machine learning with LIDAR (Light Detection and…

Read More

Comprehending the visual comprehension of language models.

Massachusetts Institute of Technology's Computer Science and Artificial Intelligence Laboratory (CSAIL) has revealed that language models without image experience still understand the visual world. The team found that even without seeing images, language models could write image-rendering code that could generate detailed and complicated scenes. The knowledge that enabled this process came from the vast…

Read More

Scientists improve the peripheral vision capabilities in AI models.

Researchers at Massachusetts Institute of Technology (MIT) have developed an image dataset to simulate peripheral vision in artificial intelligence (AI) models. This step is aimed at helping such models detect approaching dangers more effectively, or predict whether a human driver would take note of an incoming object. Peripheral vision in humans allows us to see…

Read More