To counter unsafe responses from chatbots, companies often use a process called red-teaming, in which human testers write prompts designed to elicit such responses so the artificial intelligence (AI) can be trained to avoid them. However, since it is impossible for human testers to cover every potential toxic prompt, MIT researchers developed a technique utilizing…
Medical imaging is a critical tool in diagnosing and monitoring disease. However, interpreting these images is not always straightforward, leading to potential disagreement amongst clinicians. To address this issue, researchers at MIT, in collaboration with the Broad Institute of MIT and Harvard, and Massachusetts General Hospital (MGH), have developed an artificial intelligence (AI) tool, named…
Large language models powering AI chatbots possess the potential for generating harmful content due to their exposure to countless websites, putting users at risk if the AI generates illegal activities description, illicit instructions, or personal information leakage. To mitigate such threats, AI-developing companies use a procedure known as red-teaming, where human testers compose prompts aimed…
In biomedical science, the process of annotating pixels from crucial elements within a medical image, such as a cell or organ, is called segmentation. This task can be aided by artificial intelligence (AI), which highlights pixels that might indicate the existence of a certain disease or anomaly. However, segmentation is seldom clear-cut, as a group…
Artificial intelligence (AI) chatbots like ChatGPT, capable of generating computer code, summarizing articles, and potentially even providing instructions for dangerous or illegal activities, pose unique safety challenges. To mitigate this risk, companies use a safeguarding process known as red-teaming, where human testers attempt to prompt inappropriate or unsafe responses from AI models. This process is…
Artificial Intelligence (AI) models are increasingly being employed in the field of biomedicine to assist clinicians with image segmentation, a process that annotates pixels from important structures in a medical image, such as an organ or cell. However, these AI models often offer a singular answer, while image segmentation in the medical field is usually…
Companies that build large language models, like those used in AI chatbots, routinely safeguard their systems using a process known as red-teaming. This involves human testers generating prompts designed to trigger unsafe or toxic responses from the bot, thus enabling creators to understand potential weaknesses and vulnerabilities. Despite the merits of this procedure, it often…
In the field of biomedicine, segmentation plays a crucial role in identifying and highlighting essential structures in medical images, such as organs or cells. In recent times, artificial intelligence (AI) models have shown promise in aiding clinicians by identifying pixels that may indicate disease or anomalies. However, there is a consensus that this method is…
Researchers from the Massachusetts Institute of Technology (MIT) are using machine learning to explore the concept of short-range order (SRO) in metallic alloys at atomic levels. The team believes that understanding SRO is key to creating high-performance alloys with unique properties but this has been a challenging area to explore. High-entropy alloys are of particular…
The Short-Range Order (SRO), the arrangement of atoms over small distances, plays a crucial role in materials’ properties, yet it has been understudied in metallic alloys. However, recent attention has been drawn to this concept as it is a contributing step towards developing high-performing alloys known as high-entropy alloys. Understanding how atoms self-arrange can pose…
Artificial Intelligence chatbots have the capacity to construct helpful code, summarize articles, and even create more hazardous content. To prevent safety violations like these, companies employed a procedure known as "red-teaming" in which human testers crafted prompts intended to elicit unsafe responses from chatbots, which were then taught to avoid these inputs. However, this required…
In biomedicine, the process of segmentation involves marking significant structures in a medical image, such as cells or organs. This can aid in the detection and treatment of diseases visible in these images. Despite this promise, current artificial intelligence (AI) systems used for medical image segmentation only offer a single segmentation result. This approach isn't…