Skip to content Skip to sidebar Skip to footer

School of Science

A novel computational method could simplify the process of creating beneficial proteins.

MIT researchers have developed a computational model that helps predict mutations leading to better proteins, based on a relatively small dataset. In the current process of creating proteins with useful functions, scientists usually start with a natural protein and put it through numerous rounds of random mutation to generate an optimized version. This process has led…

Read More

A novel computational method may simplify the process of designing beneficial proteins.

In a search to create more effective proteins for various purposes, including research and medical applications, researchers at MIT have developed a new computational approach aimed at predicting beneficial mutations based on limited data. Modeling this technique, they produced modified versions of green fluorescent protein (GFP), a protein found in certain jellyfish, and explored its…

Read More

A novel computational method may simplify the process of engineering beneficial proteins.

Scientists at the Massachusetts Institute of Technology (MIT) have developed a computational tool that can predict mutations to help create better proteins. The tool facilitates the creation of improved versions of proteins through strategic mutations and could offer significant advancements in neuroscience research and medical applications. One common procedure for producing improved proteins involves introducing…

Read More

A novel computational method could simplify the process of designing beneficial proteins.

Researchers at MIT have developed a computational method to hasten the process of generating optimized versions of proteins, using only a small amount of data. The researchers have generated proteins with mutations capable of improving Green Fluorescent Protein (GFP) and a protein used to deliver DNA for gene therapy from an adeno-associated virus (AAV). The process…

Read More

A novel computational method might simplify the process of designing beneficial proteins.

Protein engineering is a complicated process, typically involving the random mutation of a natural protein with a desirable function, repeated until an optimal version of the protein is developed. This process has proven successful for proteins like the green fluorescent protein (GFP), but this isn't the case for all proteins. Researchers at MIT have developed…

Read More

A novel computational method could simplify the process of designing beneficial proteins.

MIT researchers have developed a computational approach to help predict mutations that can create optimized versions of certain proteins, working with a relatively small amount of data. The team believes the system could lead to potential medical applications and neuroscience research tools. Usually, protein engineering begins with a natural protein that already has a desirable function,…

Read More

A novel computational algorithm could simplify the process of creating beneficial proteins.

MIT researchers have developed a computational approach that predicts protein mutations, based on limited data, that would enhance their performance. The researchers used their model to create optimized versions of proteins derived from two naturally occurring structures. One of these was the green fluorescent protein (GFP), a molecule used to track cellular processes within the…

Read More

A novel computational method may simplify the process of designing beneficial proteins.

Scientists at Massachusetts Institute of Technology (MIT) have developed a computational model aimed at simplifying the process of protein engineering. The researchers applied mutations to natural proteins with desirable traits, such as the ability to emit fluorescent light, using random mutation to cultivate better versions of the protein. The technique was deployed using the green…

Read More

Researchers from MIT present a generative artificial intelligence for databases.

GenSQL, a new AI tool developed by scientists at MIT, is designed to simplify the complex statistical analysis of tabular data, enabling users to readily understand and interpret their databases. To this end, users don't need to grasp what is happening behind the scenes to develop accurate insights. The system's capabilities include making predictions, identifying anomalies,…

Read More

MIT scholars researching generative AI’s implications and uses received the second round of seed fund allocations.

MIT President Sally Kornbluth and Provost Cynthia Barnhart last year issued a call for papers with the aim of developing effective strategies, policy recommendations, and calls to action in the field of generative artificial intelligence (AI). The response was overwhelming, with a total of 75 proposals submitted. Out of these, 27 were selected for seed…

Read More

MIT researchers studying the implications and uses of generative AI receive a second phase of seed funds.

Last summer, MIT President Sally Kornbluth and Provost Cynthia Barnhart issued a call for papers on generative artificial intelligence (AI). They sought effective roadmaps, policy recommendations, and calls for action in the AI field, and received 75 proposals. Out of these, 27 were selected for seed funding. Due to the robust response to this initial funding…

Read More

MIT researchers studying the effects and uses of generative AI have received a second round of seed funding.

MIT President, Sally Kornbluth, and Provost, Cynthia Barnhart, recently solicited research proposals on the topic of generative artificial intelligence (AI). The response was overwhelming, with 75 proposals submitted from across MIT. Consequently, due to the level of interest and quality of the proposals, a second call for papers was announced, which led to an additional…

Read More