Qdrant, a pioneer in vector search technology, has unveiled BM42, a powerful new algorithm, aimed at transforming hybrid search. BM25, the algorithm relied upon by search engines like Google and Yahoo, has dominated for over 40 years. Yet, the rise of vector search and the launch of Retrieval-Augmented Generation (RAG) technologies have revealed the need…
Researchers from Stanford University have developed a new model to investigate the contributions of individual data points to machine learning processes. This allows an understanding of how the value of each data point changes as the scale of the dataset grows, illustrating that some points are more useful in smaller datasets, while others become more…
Overfitting is a prevalent problem when training large neural networks on limited data. It indicates a model's strong performance on the training data but its failure to perform comparably on unseen test data. This issue arises when the network’s feature detectors become overly specialized to the training data, building complex dependencies that do not apply…
The computer vision sector is currently dominated by large-scale models that offer remarkable performance but demand high computational resources, making them impractical for real-world applications. To address this, the Google Research Team has opted to reduce these models into smaller, more efficient architectures via model pruning and knowledge distillation. The team's focus is on knowledge…
Developing and fine-tuning language model systems is a challenging process that usually consumes a significant amount of time and resources even for tech giants like Google and Meta. It involves an iterative process of supervised fine-tuning, aligning with human preferences, distillation, and continuous adjustment until a certain quality threshold is met. This process can take…
The evolution of Large Language Models (LLMs) in artificial intelligence has spawned several sub-groups, including Multi-Modal LLMs, Open-Source LLMs, Domain-specific LLMs, LLM Agents, Smaller LLMs, and Non-Transformer LLMs.
Multi-Modal LLMs, such as OpenAI's Sora, Google's Gemini, and LLaVA, consolidate various types of input like images, videos, and text to perform more sophisticated tasks. OpenAI's Sora…
The creation and implementation of effective AI agents have become a vital point of interest in the Language Learning Model (LLM) field. AI company, Anthropic, recently spotlighted several successful design patterns being employed in practical applications. Discussed in relation to Claude's models, these patterns offer transferable insights for other LLMs. Five key design patterns examined…
As the use of AI, specifically linguistically-minded model (LLM) agents, increases in our world, companies are striving to create more efficient design patterns to optimize their AI resources. Recently, a company called Anthropic has introduced several patterns that are notably successful in practical applications. These patterns include Delegation, Parallelization, Specialization, Debate, and Tool Suite Experts,…
Generative AI jailbreaking is a technique that allows users to get artificial intelligence (AI) to create potentially harmful or unsafe content. Microsoft researchers recently discovered a new jailbreaking method they dubbed "Skeleton Key." This technique tricks AI into ignoring safety guidelines and Responsible AI (RAI) guardrails that help prevent it from producing offensive, illegal or…
Self-supervised learning (SSL) has broadened the application of speech technology by minimizing the requirement for labeled data. However, the current models only support approximately 100-150 of the over 7,000 languages in the world. This is primarily due to the lack of transcribed speech and the fact that only about half of these languages have formal…
Large language models (LLMs) are known for their ability to contain vast amounts of factual information, leading to their effective use in factual question-answering tasks. However, these models often create appropriate but incorrect responses due to issues related to retrieval and application of their stored knowledge. This undermines their dependability and hinders their wide adoption…
The integration of automation and artificial intelligence (AI) in fungi-based bioprocesses is becoming instrumental in achieving sustainability through a circular economy model. These processes take advantage of the metabolic versatility of filamentous fungi, allowing for conversion of organic substances into bioproducts. Automation replaces manual procedures enhancing efficiency, while AI improves decision making and control based…