Research in materials science is increasingly focusing on the rapid discovery and characterization of materials with specific attributes. A key aspect of this research is the comprehension of crystal structures, which are naturally complex due to their periodic and infinite nature. This complexity presents significant challenges when attempting to model and predict material properties, difficulties…
The production of realistic human facial images has been a long-standing challenge for researchers in machine learning and computer vision. Earlier techniques like Eigenfaces utilised Principal Component Analysis (PCA) to learn statistical priors from data, yet they notably struggled to capture the complexities of real-world factors such as lighting, viewpoints, and expressions beyond frontal poses.…
In the world of machine learning, large language models (LLMs) are a significant area of study. Recently, model merging or the combination of multiple LLMs into a single framework has fascinated the researcher's community because it doesn't require any additional training. This reduces the cost of creating new models considerably, sparking an interest in model…
Researchers and developers often need to execute large language models (LLMs), such as Generative Pre-trained Transformers (GPT), with efficiency and speed. The choice of hardware greatly influences performance during these processing tasks, with the two main contenders being Central Processing Units (CPUs) and Graphics Processing Units (GPUs).
CPUs are standard in virtually all computing devices and…
The debate over the necessity of copyrighted materials to train top Artificial Intelligence (AI) models continues to be a hot topic within the AI industry. This discussion was fueled further when OpenAI proclaimed to the UK Parliament in 2023 that it's 'impossible' to train these models without using copyrighted content, resulting in legal disputes and…
Artificial intelligence (AI) is an industry that is developing at a rapid pace. However, there are several challenges that exist in transitioning research innovations into practical applications. It can be a difficult task to improve the quality of AI models to match the standards required for production. Even though researchers can create robust models, adapting…
In the ever-evolving fields of computer vision and artificial intelligence, traditional methodologies favor larger models for advanced visual understanding. The assumption underlying this approach is that larger models can extract more powerful representations, prompting the construction of enormous vision models. However, a recent study challenges this wisdom, with a closer look at the practice of…
Decompilation is a pivotal process in software reverse engineering facilitating the analysis and interpretation of binary executables when the source code is not directly accessible. Valuable for security analysis, bug detection, and the recovery of legacy code, the process often needs assistance in generating a human-readable and semantically accurate source code, which is a substantial…
The increasing use of facial recognition technologies is a double-edged sword, wherein it provides unprecedented convenience, but also poses a significant risk to personal privacy as facial data could unintentionally reveal private details about an individual. As such, there is an urgent need for privacy-preserving measures in these face recognition systems.
A pioneering approach to this…
Microsoft researchers have introduced Garnet, a versatile and highly performant cache-store system designed to support the rapidly evolving needs of modern applications. Traditional cache-stores have struggled to keep pace with the increasing complexity and demands of interactive web applications, driving the creation of this new, open-source solution.
As opposed to its predecessor, Garnet handles not…
Data scientists and engineers often encounter difficulties when collaborating on machine learning (ML) tasks due to concerns about data reproducibility and traceability. Software code tends to be transparent about its origin and modifications, but it's often hard to ascertain the exact provenance of the data used for training ML models and the transformations conducted.
To tackle…